

Formation and termination of particle transport barrier in LHD

<u>S. Ohdachi</u>, K. Tanaka, R. Sakamoto, T. Morisaki, J. Miyazawa, K. Y. Watanabe and LHD Experiment Group

National Institute for Fusion Science

Outline

- Peaked density/pressure plasmas observed in the Large Helical Device
- Build-up process
- MHD property of LHD
- Collapse event and ballooning mode
- Summary

L = 2, m=10 Heliotron type device R = 3.5 - 3.9m, a ~ 0.6m

NBI(tangential) ~ 15MW

MHD instabilities and high- β operational regime

How to make the Peaked Profile

Particle Transport Property of IDB Plasmas

Particle transport coefficient of IDB plasma is estimated from relationship between time evolution and gradient of density profiles.

Increase of the central beta is limited by CDC

- Increase of the β₀ is disturbed by a collapse event, (so-called core density collapse(CDC)). CDC is an abrupt event where the core density is collapsed within 1 ms. (much faster than other MHD relaxation events in the LHD)
- By CDC, central beta is decreased by ~50%.
- MHD events is a candidate since the process is very fast.

Typical lota profile and well/Hill boundary

- In LHD, pressure gradient driven modes are important; stability depends on magnetic well depth.
- With increase of beta, the well region expands. (core instabilities vanish.)
- Ballooning mode both in Tokamak-like normal-shear region and negative-shear region is expected with steep pressure gradient.

N. Nakajima Phys. Plasmas **3** 4545,4556(1996)

Growth-rate is calculated by Hn-Bal code

ο

1.0

Ś

Systematic survey of High-n ballooning mode

- Growth rate are calculated increasing the central beta value.
- High-n ballooning mode is destabilized in Magnetic hill region when central beta is increased.
- Growth rate is estimated in the outboard side of horizontally elongated section. We expect mode structure even in the vertically elongated section.

CDC region and Ballooning unstable region

- Experimental data(A) is organized by magnetic axis position and the central beta.
- CDC appears where growth rate is rapidly increasing.

- Most of the fluctuation diagnostics in LHD is line-integrated ones.
- We use vertically elongated section to compare in/out asymmetry.

Pre-cursor observed in CO2 interferometer Inboard Outboard lhd-r385q100b117c293a2020 #78853 1.0 tCO2 ~8kHz Center 0.5 Center Ξ_{0.0} Ν -0.5 20 -1.0 3.0 3.5 4.0 4.5 R [m] _ر 10¹⁹ Oscillations just observed only in Pre-cursor is distinguished in relatively low Bt Edge (2.0T)Edge experiments. 0 1.3660 1.3665 1.3650 1.3655 1.3670 1.3650 1.3655 1.3660 1.3665 1.3670 Time [s] Time [s]

Profile of pre-cursor like oscillations

Location of the fluctuations are consistent with the calculation of Hnbal code.

Error in the estimation of ρ is not small ($\Delta \rho \sim 0.2$) since the distance of the flux surfaces are quite small in the outboard side.

Inner peak ($\rho \sim 0.3-0.5$) might be caused by the line-integration effect.

Why radially narrow mode affects the whole profile?

Candidate 2

• Ergodization of the magnetic field is expected from the nonlinear simulation. (N. Mizuguchi *et al Nucl. Fusion* **49**(2009) 095023)

•Particle flux is enhaced due to the parallel particle flux.

- At the beginning, flattening of the edge region ($\rho \sim 0.8$) is observed.
- The stability at inner area becomes worse after the flattening.
- Large scale MHD instability are triggered by this.

Summary

- Fairly peaked density/pressure profile is observed with multiple pellet injection in LHD. The limit of the pressure gradient is determined by MHD collapse events.
- This collpase is related with the high-n ballooning mode.
 - Collapse appears where the ballooning mode is unstable.
 - Precursors, localized in the code predicted region, are sometimes observed.

Mistery to be studied

- Though the mode structure and precursors are well localized (Δρ < 0.2), whole plasma is affected by this event. Different from ELM events in tokamak H-mode.
- Core localized MHD instabilities (m=1?) might be related with this.