

Collisionality scaling in Tore Supra: on the uncertainties of global and local energy confinement analysis and what can be done to overcome them

C. Bourdelle, T. Gerbaud, L. Vermare, A. Casati, and the Tore Supra Team

In 2005, Napa Valley TTF, review on dimensionless scaling laws

²To improve confinement scaling understanding need local dimensionless analysis

- From global scaling to local scaling, $\tau ~ \sim a^2/<\chi_{eff}>$ OK if χ_{eff} has same parametric behavior across whole plasma and no stiffness
- Usually not the case: inner, gradient and edge regions respond to different theoretical models
- So need a real local dimensionless analysis based on ρ $_{\star}, \nu_{\star}, \beta, \epsilon, \kappa, \delta, q, Z_{eff}, s, T_e/T_i, M, m_e/m_i separating ion, electron and particle transport to be compared with simulation/theory$

Still convinced, but since I reallized how difficult it is...

ν^{\star} scaling laws in L mode

ν_{*}ρ=0.6)

- Experimental setup
- Global scaling
 - Definitions of $\tau_{\text{E}},\,\nu^{\star}$
 - Accounting for uncertainties
- Local scaling
- Gyrokinetic simulations versus turbulence measurements
- Conclusion

Experimental setup

- $\underline{\bigcirc} \bullet \text{ Since:} \qquad \beta \propto n_e T_e B^{-2}, \ \rho^* \propto \sqrt{T_e} B^{-1}, \ \nu^* \propto q n_e T_e^{-2}$
- To keep β and ρ^* fixed, one gets: $v^* \propto B^{-4}$
 - At the lowest B, ohmic discharge, then choose 3 B at which ICRH can be coupled: 2.4 T, 2.8T, 3.2T and 3.9T
 - At the lowest B and I_p, Greenwald fraction maximized to optimize Doppler reflectometer measurements: nl=4.5.10¹⁹m⁻²

Discharge number	39596	39648	39611	39598
B (T)	2.40	2.82	3.20	3.87
I (MA)	0.78	0.92	1.04	1.25
P_{ohm} (MW)	0.78	0.84	0.85	0.95
P_{ICRH} (MW)	0	0	0.51	0.61
$ u^*{}_{min}$	0.60	0.38	0.25	0.19

Uncertainties on dimensionless parameters

nergie atomique - energies alternatives	Data	n _e	T _e	В	q	ρ*	β	v^*
	uncertainty	10%	10%	5 %	20%	7%	17%	30%

• β and ρ^* vary within uncertainties •T_e/T_i and Z_{eff} vary more

Global scaling: definitions

- In Tore Supra limited discharges P_{rad} in LCFS up to 90% total
- Surface inside which radiative losses can be neglected (less than 20% of absorbed power) as in Perkins 1993

$$\tau_E^{tr} = \frac{W_{th}^{r/a < \rho_{in}}}{P_{abs}^{r/a < \rho_{in}}}$$

raa

Global scaling

But...

CECI

enerale atomique • enerales altern

B au

From Cordey NF2009 and Gürcan NF2010, need to account for uncertainties on P and W but also for ρ^* and β scalings:

$$(\Delta \alpha_{\nu})^{2} = \frac{1}{\left[\sum_{i} (x_{i} - \langle x \rangle)^{2}\right]^{2}} \sum_{j} (x_{j} - \langle x \rangle)^{2}$$

$$\times \left[\left(-2\frac{y_{j} - \langle y \rangle}{x_{j} - \langle x \rangle} + \left(1 - \frac{1}{2}\alpha_{\rho} + 4\alpha_{\nu} - \alpha_{\beta}\right)\right)^{2} \left(\frac{\Delta W_{j}}{W_{j}}\right)^{2} + \left(\frac{\Delta P_{j}}{P_{j}}\right)^{2}\right]$$

$$(5)$$

assumptions on α_{ρ} and α_{β}		$\Delta \alpha_{\nu}$
$\alpha_{\beta} = 0, \alpha_{\rho} = 0$	-0.32	0.26
$\alpha_{\beta} = 0, \ \alpha_{\rho} = -3 \text{ and all } 4 \ \rho^* \text{ fixed to its value in } \#39596$		0.58
$\alpha_{\beta} = 0, \alpha_{\rho} = -3 \text{ and } \Delta \rho^* / \rho^* = 7\%$	0.02	0.74
$\alpha_{\beta} = -1.41, \alpha_{\rho} = -3 \text{ and } \Delta \rho^* / \rho^* = 7\%, \Delta \beta / \beta = 17\%$	0.33	1.34

Local analysis

• Avoid r/a where less than 80% of P_{add} is absorbed and where more than 70% of P is radiated: r/a ~ 0.6

Gyrokinetic modeling

- Linear: ITG modes, need $v^*/60$ to see TEM
 - Z_{eff} variation affects strongly linear modes
 - Despite ITG at rather high v^* , still detrapping impacts non-linear fluxes: stabilizing impact of v^*

GYRO Local NL

Weak impact of v^* on $\delta n/n$ reproduced by non-linear gyro-kinetic simulations (local GYRO)

TORE SUPRA

conclusions

*0.0±0.7

- Weak impact of v^* on global and local confinement
 - Not possible to resolve more precisely due to underlying gyroBohm scaling, worse if β dependence... Cordey-Gürcan $B\tau_{F} \propto v^{2}$
 - Local analysis reliability limited in radii
 - Density profiles not modified during this scan
 - The way to get around: direct NL GK versus turbulent measurements in dimensionless scaling experiments
 - For r/a<0.7: weak impact of v^* on turbulence measurements reproduced by NL local GK
 - For r/a>0.7 see next talk

More details in Bourdelle et al submitted to NF

energie atomique - energies alternative

œ

energie atomique · energies alternatives

bolometry

Plus Zeff and Te/Ti mismatches...

Hence worth having a look at scaling from 2 OH only

$$B\tau_E = \nu^{*-0.9\pm0.6}$$

• Weak dependence in agreement with previous work

Turbulence measurements

- By Doppler at r/a=0.7-0.85 kq
- By fast-sweeping for the whole radius depending on B

