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Summary

I-mode plasmas in Alcator C-Mod

eEnhanced energy confinement with L-like particle confinement
e_ow impurity confinement

I-mode is characterized by changes in edge fluctuations:
A Weakly Coherent Mode (WCM) and a broadband fluctuation
suppression
*\WCM is localized close to the Te pedestal (0.95<r/a<1)
*\WCM and Quasi-coherent mode (signature of the Enhanced Da
(EDA) H-modes) have similar radial localization and ke but different
frequency ramp up. Er well in EDA H-modes is much deeper than
In I-mode.

eBroadband suppression is seen to correlate with thermal diffusion
at the edge.

Conclusions
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I-Mode regime is characterized by H-mode like energy

confinement and L-mode like particle confinement

: _ : " Density ' SOL |
Low particle confinement . . H-mode T
*No density pedestal ne 20f -
formation (1020 m-3) | !
eLittle to no rise in <ne> 10f L-mode I-mode
Enhanced energy ol
confinement 121 o ode °TS
*Te i pedestal formation Te 10 |
*Profile stiffness — Core Te; (keV)os} i
increase 001 i
*Te(ped) Measured above °'4; 5
TkeV o.; E_Temperature . '
0.80 0.85 0.90 0.95 1.00
Jpol

Good case study for energy and
particle channel separation.

3.0

Whyte, Nucl. Fus.
Hubbard, PoP

A. Dominguez, US-TTF, San Diego, CA 4/9/2011

1091016033




I-Mode impurity confinement is low which is

desirable for a reactor regime

Using CaF2 impurity laser blow off,
impurity confinement time has been

measured in I-mode plasmas.

I-mode impurity confinement time is
similar to L-mode. Lower than

EDA H-Mode, and much lower than
ELM-free H-mode

I-modes have been sustained for
many confinement times (>10Tg)

Energy confinement quality
measured by Hos is equal and
greater than H-mode
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C-Mod has a comprehensive set of

edge fluctuation diagnostics
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local.

Multichannel reflectometer:

amplitude, power spectra

Gas Puff Imaging (GPI):

2D, amplitude, power spectra, wavenumber spectra

line integrated:.
Phase Contrast Imaging (PCI):
amplitude, power spectra, wavenumber spectra

TelTe:
High resolution ECE radiometer:
local,amplitude, power spectra

Bo/Be

Fast magnetic probes:
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Changes in fluctuations correlate with

regime transitions

e Magnetic: Bo/Bo
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Weakly Coherent Mode (WCM)
*Fluctuation enhancement seen for
feent~200kHz [100-350kHZ]

*Fairly broad (Af/fcent~0.5) as compared
with other MHD modes seen on C-Mod
*Abruptly disappears at I-H transition
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Changes in fluctuations correlate with
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WCM has been localized at ~0.95<r/a<~1

Reflectometry can be used to radially 88GHz (n, .,
localize the WCM.

Typically, WCM is observed within ~1cm
inside the LCFS

For a=20cm: ~0.95<r/a<~1
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WCM ke~2cm-1 in the electron

diamagnetic direction

*From GPI and PCI: ke~2cm-in the

electron diamagnetic direction for all qes Gas Puff Imaging measurement

IDD EDD
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The WCM has a similar ke and radial

localization as the QCM.

On Alcator C-Mod, the Enhanced Da *Both modes localized
(EDA) H-mode is accompanied by a near the pedestal region
Quasi-coherent mode (QCIM) GPI
04
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Differences in WCM and QCM frequency ramp up

are likely connected to differences in edge Er

QCM
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stypically fcent@cm) < feentwem)
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eInverse frequency ramp:

fecent(acm) decreases with Wi,
feentowem) increases with Win

Using boron charge exchange
recombination spectroscopy, edge
Er terms have been measured:
*EDA H-Mode develops a large Er
well, such that:

*VEXB(EDA H-mode)~10km/s same order
as Veph(acmy~3km/s (both EDD)
*]-mode has a moderate Er well
with Er~0 at the center

*ExB doppler shift clearly plays
larger role in QCM than WCM
*The differences in the signature
modes and pedestal
collisionalities set the QCM and
WCM clearly apart.
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Measured WCM Te/Te~1-1.5%<fie/Ne~7%

*\WCM Te fluctuations have been observed using a
high resolution ECE radiometer
*\WCM localized within 1cm inside LCFS (r/a~0.95)

where optical depth T~4.

T~4 at r/a~0.95
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Thermal diffusion at the edge estimated from

TRANSP correlates well with fluctuation suppression

Using the power balance code T 200
TRANSP: =
veff at the plasma edge drops at the £ 200
L-I and I-H transition. 100
of
. . 1
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Conclusions

I-mode regimes have been routinely produced on C-Mod featuring:
High energy confinement, low particle confinement.

Changes in fie, Te and Bo close to the LCFS accompany the I-mode
regime:

*The Weakly Coherent Mode (WCM):
eradially localized within 0.95<r/a<1
.fcent"' ZOOKHZ, fFWHM ~ 80kHZ
eSimilar localization and ke as QCM but different frequency evolutions
likely related to a much weaker Er well in I-mode than in EDA H-mode
*Observations are consistent with WCM being responsible with
maintaining particle transport across LCFS

eBroadband fluctuation suppression (BFS):
*~50kHz- ~150kHz range

*Strong correlation between the BFS and the edge s has been
observed coincident with the Te pedestal formation

A. Dominguez, US-TTF, San Diego, CA 4/9/2011



