2-D Analysis of Edge Turbulence Velocity and Blobs in C-Mod

S.J. Zweben¹, J.L. Terry², M. Agostini³, B. Davis¹, O. Grulke⁴, B. LaBombard², D.A. D'Ippolito⁵, J.R. Myra⁵, D.A. Russell⁵

¹ PPPL -- ² MIT -- ³ RFX -- ⁴ IPP -- ⁵ Lodestar

- Correlation analysis showing multi-frequency zonal flow
- Blob analysis vs. correlation analysis of 2-D velocity
- Correlation of poloidal and radial velocities

Gas Puff Imaging (GPI) Diagnostic

- Optics view along B toward D_{α} emission from D_2 gas puff
- Oriented to view 2-D radial vs. poloidal plane at gas cloud

Alcator C-Mod Gas Puff Imaging

- This movie 400,000 frames/sec (normalized to average)
- Viewing area ~ 6 cm radially x 6 cm poloidally

What Are We Seeing in GPI ?

- Seeing local emission of $D_{\alpha} \sim n_o f(n_e, T_e)$ within window where D_{α} is emitted in plasma edge, where $T_e \sim 10 100 \text{ eV}$
- Can measure 2-D *turbulence structure and motion* even if response of D_{α} is nonlinear (like contrast knob on a TV)
- Can not directly measure fluid (ion) flow or ExB flow, but measures turbulence flow velocity, as done previously*

* McKee et al, PoP '03 using BES on DIII-D Conway et al, PPCF '05 using Doppler reflectometry on AUG

Method to Evaluate Turbulence Velocity

- for each pixel in each frame, make a short time series of the GPI signal at that pixel over \pm 3 frames or 18 μs total
- find best match to this time series in pixels of the next frame
- find V_{rad} and V_{pol} from relative displacement of best match
- produces 2-D velocity field with time resolution ~ 40 kHz

Poloidal Velocity vs. Poloidal Position

- Estimate 'zonal flows' by averaging V_{pol} over $z \sim 5$ cm
- Typical result has significant poloidal variations of V_{pol}
- Average over these variations to get V_{pol}(radius, time)

Poloidally Averaged Velocity vs. Time

- + V_{pol} (black) and V_{rad} (orange) and for ρ ~ 0 cm
- Some cross-correlation between V_{pol} and V_{rad}

Radial Profiles of Poloidal Velocities

- Poloidal velocity fluctuations ~ time-averaged velocities
- Implies fluctuating "zonal flow" ~ time-averaged velocity

Time Dependence of Velocity Spectra

- No clear spectral features lasting more than ~ 1 msec
- · Looks similar at other radii and for other similar shots

Radial Profile of Velocity Spectra

- Spectra of V_{pol} seems to have intermittent harmonic structure
- This structure seems localized within ± 1 cm of separatrix

Theoretical GAM Frequency for C-Mod

• GAM frequency f = G $c_s/(\pi R)$ with G=geometric factor, R = R_o+r, and $c_s = [\gamma(T_i+T_e)/m_i]^{1/2}$

where G~ $(2^{-1/2})$ $(2/(1+\kappa) (1+1/(2A^{2/3}) (1+1/(4q^2)))$

for C-Mod with A=3, κ =1.6, q=3, T_e=T_i=50 eV, γ =4/3 and m_i=2

 These analytic values (from R. Hager) can still deviate a factor-of-two from experiment (Hallatschek PPCF 2007)¹¹

Blob Analysis of C-Mod GPI Data

- Choose threshold for blob detection (e.g. 1.2 x average)
- Calculate 2-D velocities from blob trajectories (~ 3 / frame)

trajectories of blobs

Blob Analysis vs. Correlation Analysis

- Choose threshold for blob detection (e.g. 1.2 x average)
- Calculate 2-D velocities from blob trajectories (~ 3/frame)
- See also Agostini et al (Friday am) for more comparisons

Correlation of Radial and Poloidal Velocity

- Can calculate $\langle \delta V_{rad} \delta V_{pol} \rangle$ either zonal-averaged or locally
- If RS d/dr< $\delta V_{rad} \delta V_{pol}$ > = vV_{pol} , then $v \sim 10^3 \text{ sec}^{-1}$ in SOL

Summary of 2-D Velocity Analysis

- Possible intermittent, multiple-frequency zonal-like flows seen near separatrix in at least some (not all) cases
- Velocities from blob-tracking similar to correlation method (both radially outward and in IDD in SOL, as expected)
- Correlation between V_{rad} and V_{pol} in SOL consistent with Reynolds stress-driven flows assuming $v \sim 10^3 \text{ sec}^{-1}$

Still very much to learn !