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Time Evolution of Runaway Electrons

During Disruption

< Runaway electrons (REs) form in
tokamaks during periods of strong
electric fields

- Startup DIII-D disruption time sequence

- RF current drive #141754

- Disruptions

< Runaway evolution during
disruption has several phas

— Thermal quench
(RE seed formation)
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Time Evolution of Runaway Electrons

During Disruption
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Disruption RE Seed Formation in Present Devices

Could be a Profile Effect

Radial profiles from 1D model of
DIlI-D d'{i)sruption» e Observe RE seeds (post prompt loss)

Z_Te ol L of order 0-10 kA in present devices
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Large Variation in Final RE Current Due to

Variation in Prompt Loss Term?

= Final RE populations can vary
by orders of magnitude, even Final RE current in DIII-D vs
on repeat shots number of injected atoms

100

+IRE measured from Ip fit

= Highest RE populations seen for ';JFZE' esfimated from scintiliators

disruptions initiated by high-Z <
injection (DIII-D, TEXTOR, JET) =
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G 4 | AArgasjet
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10-4; range for

© Ne gas jet
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unmitigated = A | g H,orD, gas jet
= Large scatter in final RE current | disruptions -

may arise from scatter in 10-6]8---- =R scmh"aior aetei:ii-oﬁ.liﬁi-t
prompt loss? . . .
10-1 100 101 102 103
Ninj (1021 atoms)

e Variation in seed term cannot (E. Hollmann, PoP 2009)
be ruled out yet, though
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Prompt Loss of Runaways Thought to be Due to TQ

MHD Destroying Good Confinement

< NIMROD simulations predict large prompt
loss of REs due to destruction of flux surfaces
by TQ MHD in DIlI-D diverted shots

— Predicted prompt loss to divertor, consistent with
observations (A. James, to be submitted, NF
2011)

= Lower prompt loss predicted for limited
plasmas; consistent with observations
(DII-D, JET) /
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Prompt RE Predicted to be Reduced

In Larger Tokamaks

< NIMROD predicts reduced prompt RE loss in larger tokamaks:
— 100% loss in C-Mod, consistent with observations (Whyte, ITPA 2010)

- 32% loss in DIII-D, consistent with observations (but huge scatter)

— 0% in ITER

C-MOD DIII-D ITER

05 07 09 1.0 15 2.0
(V. Izzo, IAEA 2010) ~
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Is Prompt Loss MHD Responsible for Observed B=2T

Lower Bound for RE Formation?

Disruptions in JET suggesting

 Many tokamaks observe B=2T B = 2 T threshold for RE formation
threshold for RE formation P A T TeC e
(JET, JT-60UV) : F 50 403
n gy n_-' r --q’--

W
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= Experiments to isolate B; vs qqs
effect not totally clear yet
(M. Lehnen, PPCF 2009)
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toroidal magnetic field [T]
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‘W JETRE
® JET w/o RE
O TEXTOR RE (Iower B, limit)

< Many mechanisms speculated

— Effect of B on TQ MHD 0 P e o Wm]m 40
— Whistler waves (T. Fulop, PoP 2009) (M. Lehnen, PPCF 2009)

Hollmann/TTF/April 2011 t‘ﬂ’—]



Can External Non-axisymmetric Magnetic

Perturbations Affect RE Prompt Loss?

< Changing applied magnetic fields could ( M. Lehnen, PRL 2008)
effect TQ MHD and prompt RE loss 120 B | | —
o . . 100 - o N=
- Reduction in REs with applied n=2 RMP ey =
seen in JT-60U (R. Yoshino, NF 2000) g %0 | .‘:: ¢« .
. : T 60 :
= Clearreduction in REs seen in TEXTOR for & L
n=1 perturbation, not as clear .l R S o
for n=2 20! TEXTOR
#102529-35:103007-13,29;105634-44 46 "."
= Some possible reduction in REs seen 00 1 9 ; 4
in DIII-D for n=3 perturbation? Ipep/n (kA)
= NIMROD simulations indicate applied (D. Humphreys, APS 2009)
. 400
fields could reduce RE prompt loss B
(V. Izzo, Sherwood 2010) 2008 DIlI-D 0
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Runaway Electron Growth During Current Quench

Qualitatively Consistent with Avalanche

Avalanche model
qualitatively captures DIII-D

< During CQ RE formation expected to RE current growth in CQ
be dominated by knock-on 7 —
avalanche (A. Sokolov, JETP 1979) - lp (MA) |
A b\
RE ~nrevo(E /Egrit —1) | N total
o —— EVI_
e CQ avalanche gain moderate (~50) 50 /\ o (V/m)
In mid-sized tokamaks (TEXTOR, e ——————
DIII-D) and large (10%°) in ITER 08 REseed=8kA Ire (MA)
| gl measured
0.4 e, __TIF
e Qualitative indications of RE al _."'),\modql o maetn |
avalanche seen in many tokamaks 400 2uh tir:f?ms) e, <00
(JT-60U, TEXTOR, JET, DIII-D, etc)

(E. Hollmann, APS 2009)
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Very High Impurity Injection Could Suppress

Runaway Avalanche During CQ

Total mid-CQ electron density

= Complete suppression of CQ RE avalanche after MGI shutdown in DIII-D

at total electron density n; ~ 5x10%/cm3

- . . 016 Ar MGI A4
= Many mass injection schemes (massive e L
gas injection, large cryogenic pellets, 0.12 - [wHeva ¥
laser ablation, shell pellets) tested £ | |® HyorD; Mal i
c 7
= Bestresults to date are n,;~ 0.2 ng; = 0.08 7o
(DII-D, TEXTOR, ASDEX-U) & v v° °
A A . »
PN e @ ©®
0.04 - o
e OV’AO y.‘ 2, o
Large shell pellet | S R
(E. Hollmann, 101 102
POP 2009) Ninj (102! atoms)

injection flange

& | arge cryogenic
pellet injector
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RE Plateau Consists of Two-temperature Plasma with

Current Carried by Runaway Electrons

= In DIlI-D plateau, RE energy is ~20 MeV or RE plateau
1.5 . : : . . .
= Energy consistent with integration of CQ 0D 1 '\ lp (MA) |
loop voltage 065 | #are11 . 1 e— ]
< Background cold plasma has :: | | |  Ey(Vim)
T~15eVandn~ 103 cm3 ’ ‘
0 . :
- rren minantl rri RE 2
Current dominantly f:a ed by REs | 10 S———— T
= System energy dominated by RE magnetic ol o
energy; RE kinetic energy o osypcmmr'.h_ﬁgm;ss (upper bound)
_ 5X I Ower 100 I _.,’ :m::;!:;c:rhllators (lower bound) |
o 2000 2010 2020 2030 2040 2050 2060
RE plateau line RE plateau time (ms)
emission synchrotron = Current profile much broader than region

-

emission

of brightest emission

= QOutward shift of highest energy REs
qualitatively consistent with ~10 cm
relativistic drift orbit shift

P e .
separatrlx
.ﬁ | (J. Yu, APS 2009)
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Instabilities Observed In RE Plateau

Contours of Bdot measured inside
DIlI-D vessel wall
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Occasionally, instabilities
observed in RE plateau

Very narrow, localized
spikes in magnetic activity
coincide with HXR spike
from RE-wall strike

Overall loss of RE current
typically quite small,
however

Instability not identified at
present
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RE Plateau Current can be Ramped up or down with

Externally Applied Toroidal Electric Field

e First experiments done on JT-60U (R. Yoshino, NF 2000)

< More detailed comparison experiments done at DIII-D
— Assumption of background RE loss term (~10/s) consistent with data

— Consistent with RE diffusion to wall with D ~ 0.4 m?/s, qualitatively
consistent with expected values (P. Helander, PPCF 2002)

RE current growth rate vs

Effect of toroidal E field on REs applied electric field

15 T T T T I I I T 20
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Vy (V) i
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(E. Hollmann, to be submitted NF 2011)  Esur = Ecrit (V/m)
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RE Plateau Current can be Moved Vertically or

Radially with External Coills

= Uncontrolled RE-dominated plasmas tend to Radial control in Tore Supra
limit on center post and then drift vertically in 29— :
D|”—D | RE plateau
disruption
- Tokamak control systems typically not 27— Without
optimized for control of RE current (low E 2o |
elongation, high [, § 25
< Radial (Tore Supra) and vertical (DllI-D) controf® **
of RE plateau have been demonstrated ° V L sl
22¢
= Possibly allow pushing RE beam into L - 1- -

sacrificial limiter? Time -,
(F. Saint- Laurent, EPS 2009)

t=1.7190s t=1.7210s t=17230s t=17250s t=17270s t=17290s

Ip=144MA Ip=116MA Ip=078MA Ip=065MA Ip=053MA Ip=045MA . .
— 7. jz. J‘ Vertical control in DIII-D

1.4

0.7 (N. Commaux, IAEA 2010)
0.1 e e
£ A
=0.7 E ol
= = S N - N
R({m} R{m) Rim) R(m) R{m) Rim) 01 o N e
Vertical loss of RE plateau in DIII-D 2 2z 2la, 2l 208 2

DiNn-pD (T. Evans, IAEA 1998)
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Runaway Electron-wall Strike Serious Concern

Because of Very Localized Heating

= RE-wall strikes frequently observed to be

quite localized \ i

= Suggests that RE beam doesn’ t always “scrape
off” on wall smoothly but can kink into wall
suddenly

< Simulations indicate that RE-wall strikes could melt =

incident angle, a > 4°, energy E > 25 MeV, __ :
and duration, At > 5 ms (V. Sizyuk, NF 2009;

’ ’ ’ RE wall damage on JET
G. Maddaluno, JNM 20031 R ( G. Martin, 2004)
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IR thermography of RE—waﬁ
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RE-wall Strikes Show Strong Toroidal Localization both

In Prompt Loss and Late Loss Phases

HXR contours of RE-wall strikes in DIII-D
prompt loss late loss

o i Tt'l T MA) | = Loss not toroidally symmetric,
| g P except in middle of plateau

; Runayum

e Not clean n=2 or n=1 kink
structure either

%2000 / \zms t(ms) a0 2015
T oo e _m[“:"“g"'5 ——upperdivetor = RE beam current profile
= UH <«— outer midplane knowledge not good enough
.l *r owardivedior for ideal kink stability analysis
toroidal ¢ (deg.)
. = ZUUQTms t=2011.2ms t=2011.7 ms
= ﬂ nb 0
% .'BU'_
0 t%?'uil;;ﬂm {ZHTeﬂg }EBD i} g0 180 270 360 0 20 1ad Zy0 360
(A. James, APS 2009)
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Energy Transfer Between Magnetic Energy and

Kinetic Energy may Occur During RE-wall Strike

quand HXR for RE late loss in DIII_—D

0.4Ff

e RE beam energy dominantly
magnetic (W,,, ~ 100 kJ,
Wy, ~ 20 kJ in DIlI-D)

0 E #142670

20F HXR (a.u.)

1.0

0.0F

20777676 zo7at_ 20(30 : 2082 2084 2086 e DIII-D RE current appears to
Ime (ms .

Simulation of magnetic-kinetic converted rapidly to thermal

energy transfer in RE late loss strike current
= 1.0
©
S 08} _ _
= - e Simulations and data from JET
£ ¥’ “ suggest RE magnetic energy can
Z 04 —JET, IRg =2 MA, convert into RE kinetic energy
8 : Wimag =821 instead
021 / - [ERIRE=10MA,
= 0 / Wmag=3u:"w
I.I.I 1 1

0 1:5 - 10 ( A. Loarte, NF 2011)
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Ssummary: Progress in Disruption RE Understanding

In Recent Years but Still many Unknowns

= RE seeds form during disruptions at end of TQ; 1D models
appear to be able to explain RE seed formation in some cases

= Large fraction of RE seeds lost due to TQ MHD. Loss fraction has
huge scatter but appears larger in diverted plasmas and larger
In smaller plasmas, consistent with MHD simulations

< Avalanche gain during CQ appears moderate (~50x) in present
devices, expected to be huge (~10%) in ITER

= RE energy during plateau phase of order 20 MeV or less,
consistent with avalanche theory

< Small instabllities occasionally observed during RE plateau, but
no significant loss of current

= Present control systems not optimized for RE plateau but some
preliminary success in RE beam position/current control

= RE final loss can be highly localized. Shows some evidence of
conversion of magnetic to kinetic energy

DIlI-D =
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