Velocity Space Studies of Fast-ion Transport During a Sawtooth Crash

by C.M. Muscatello^a

Adviser: W.W. Heidbrink^a *Co-authors:* Ya.I. Kolesnichenko^b, V.V. Lutsenko^b, M.A. Van Zeeland^c, Yu.V. Yakovenko^b

Special thanks to the entire DIII-D team

^{a)}University of California, Irvine, CA USA ^{b)}Institute for Nuclear Research, Kyiv, Ukraine ^{c)}General Atomics, San Diego, CA, USA

at the Transport Task Force Workshop San Diego, CA

April 8th 2011

1987-1995

(general investigations on superthermal ion populations) JET – beam D, ICRF heated minority ions, fusion products of D-D reactions

- **DIII-D** beam D
- TFTR fusion-produced T

1995-2010

(studies began dissecting fast-ion velocity space) TFTR – trapped and passing D-T alphas TEXTOR – pitch resolved beam H

DIII-D Introduces Capabilities to Resolve Fast-ion Velocity Space

- Revisit sawteeth for validation of transport models and build confidence in basic understanding of energetic ion dynamics
- New fast-ion deuterium-alpha (FIDA) system added during 2009-2010 campaign to complement previous systems
 - The systems weight velocity-space differently providing reasonable discernment of different fastion populations

- Experimental setup and results: measured velocity-space dependence of fast-ion transport at a sawtooth crash
- Theory: drift-kinetic simulation of sawtooth-induced fast-ion transport and analytic treatment of particle drifts
- Summary

- Experimental setup and results: measured velocity-space dependence of fast-ion transport at a sawtooth crash
- Theory: drift-kinetic simulation of sawtooth-induced fast-ion transport and analytic treatment of particle drifts
- Summary

Low-n_e L-mode Discharge With Uniform Sawteeth

- $\begin{array}{l} \frac{\#141182:}{Bt = 1.9 \text{ T}} \\ \text{Ip} = 1.3 \text{ MA} \\ \beta = 0.003 \\ q_{95} = 4.0 \\ \langle T_e(0)^{\text{precrash}} \rangle = 3.7 \text{ keV} \\ \langle n_e(0)^{\text{precrash}} \rangle = 3.4\% 10^{19} \text{m}^{-3} \\ \langle P_{\text{inj}} \rangle = 3.2 \text{ MW} \\ \langle E_{\text{inj}} \rangle = 75 \text{ keV} \\ \langle T_{\text{sawtooth}} \rangle = 85 \text{ ms} \\ \langle \Delta n/n \rangle = -0.15 \end{array}$
- NBI is the only auxiliary heating source
- No other MHD activity detected (such as tearing modes, fishbones, AEs)
- n_e, I_p, B_t held constant to generate repeatable sawteeth

Clear Change in Many Plasma Profiles During a Crash

Employed FIDA Suite to Compare Different Parts of Velocity Space

Fast-ion deuterium-alpha (FIDA): spectroscopic-based diagnostic tool utilizing charge-exchange between injected D⁰ and fast D⁺ population to infer dynamics

• Each geometry provides unique instrumental weighting in phase space

DIII-D poloidal plane

Fast-ion Profile Flattens at a Crash

Van Zeeland et al, Nucl. Fusion 50 (2010) 084002

Interpreting FIDA Signal as a Velocity-space Weight Function

Signal ∝ ∬W(E,p)*F(E,p) dE dp

 E_{λ} : fast-ion energy component measured along line-of-sight

Passing Ions Experience Greatest Redistribution

- ~ 50% reduction in the core co- & counter-**passing** fast-ion signal
- ~25% reduction in the central-most *trapped* fast-ion signal

Stronger Passing-ion Transport is a General Trend Under Many Conditions

- Database of 30+ shots
- Various plasma shapes and conditions
- Fractional change database of FIDA signals for mostly trapped ions and co-passing ions

Parameter regimes

 $\begin{array}{l} Bt = 1.86\text{-}2.05 \ T\\ Ip = 1.16\text{-}1.34 \ MA\\ \left<\Delta T_e(0)/T_e(0)\right> = 0.21\text{-}0.37\\ \left< T_e(0)^{\text{precrash}}\right> = 2 \text{-} 5 \ \text{keV}\\ \left< n_e(0)^{\text{precrash}}\right> = 2 \text{-} 4\%10^{19}\text{m}^{-3}\\ \left< T_{\text{sawtooth}}\right> = 48\text{-}108 \ \text{ms} \end{array}$

Outline

- The DIII-D FIDA suite incorporates 3 systems which weight velocity-space differently. Experiments indicate that passing fast ions experience stronger sawtooth-induced transport than trapped ions
- Theory: drift-kinetic simulation of sawtoothinduced fast-ion transport and analytic treatment of particle drifts
- Summary

Numerical Simulation Solves Bounce/Transit-averaged Drift-kinetic Equation

 OFSEF[1] code employs Kadomtsev sawtooth crash model to evolve the fields and solves the following kinetic equation

$$\partial f/\partial t = (-\mathbf{v}_{||}^{0} - \mathbf{v}_{D} - \mathbf{v}_{||}^{1} - \mathbf{v}_{E}) \cdot \partial f/\partial \mathbf{x} - e(\mathbf{v} \cdot \mathbf{E}(\mathbf{x}, t)) \partial f/\partial E$$

f – fast-ion distribution function $\mathbf{v}_{||}^{0}$ – velocity along unperturbed flux surfaces \mathbf{v}_{D} – toroidal drift velocity $\mathbf{v}_{||}^{1}$ – velocity along perturbed flux surfaces \mathbf{v}_{E} – **E** X **B** drift due to evolving perturbation **E** – fast-ion energy

General Feature of the Simulation Shows that Passing lons are More Readily Redistributed than Trapped lons

$$\lambda \equiv \mu B_o / E$$

 Passing particle transport is insensitive to different energies and pitches

- Trapped particle transport
 depends on energy and pitch
- Smaller values of E and smaller values of λ produce flattest postcrash profiles

Fast-ion Transport at a Crash is Driven by E X B Drift

- Underlying perturbation $\delta \mathbf{B}$ takes on helical n=m=1 mode structure
- Assuming ideal conditions (except for thin layer) electric field (E= -u X B) generated by bulk plasma motion (u)
- Cross-field transport during crash driven by **EXB** drift and fast ions frozen to flux surfaces move with them
- However, some types of orbits are more prone to flux attachment than others....

Potential for Transport of Passing lons Depends on Parallel and Drift Motions

 τ_{Ψ} – **longitudinal time** – transit-averaged period along a perturbed flux surface

τ_{pr} – **toroidal precession time** – transit-averaged toroidal period

Strong transport: $\tau_{\Psi} << \tau_{\rm pr}$

<u>Above</u>: 1 poloidal transit Above: toroidal distance traveled in 1 poloidal period

Potential for Transport of Trapped Ions Depends on Crash Time and Drift Motions

 $\tau_{\rm cr}$ – crash time –

presumably synonymous with the reconnection time

τ_{pr} – **toroidal precession time** – bounce-averaged toroidal period

Strong transport: $\tau_{\rm cr} << \tau_{\rm pr}$

<u>Above</u>: 1 poloidal bounce Above: toroidal distance traveled in 1 poloidal period

Timescale Comparison can be Recast in Terms of Energy and Pitch

150

100

50

 \cap

- Criteria for **strong** redistribution of fast-ions
 - Passing: $\tau_{\Psi} \ll \tau_{pr} \rightarrow E \ll E(\chi)_{crit, passing}$
 - Trapped: $\tau_{cr} \ll \tau_{pr} \rightarrow E \ll E(\chi)_{crit,trapped}$

- Pitch: $\chi \equiv V_{\parallel}/V$
- Classical slowing-down fast-ion distribution function calculated by TRANSP
- Trapped/passing boundaries (dashed) calculated by g.c. orbit code (Van Zeeland)
- Analytic E_{crit} (solid) calculated for trapped and passing regions E_{crit}^{trapped} ≈ 40 keV E_{crit}^{passing} ≈ 200 keV

Kolesnichenko et al 1997 Phys. Plasmas 4 2544-2554.

Different Transport Observed by FIDA Systems can be Explained by E_{crit}

Mostly trapped

- Large fraction of detected particles do **not** satisfy E<<E_{crit}≈ 40 keV
- Only moderate transport expected

Co-passing

 Almost all detected particles satisfy E<<E_{crit}≈ 200 keV

• Large transport

expected

Counter-passing

- Almost all detected particles satisfy E<<E_{crit}≈ 200keV
- Large transport expected

20 30 40 50 60 70 80 Energy (keV)

Evidence for E_{crit} Observed in FIDA Spectra

Co-passing spectrum

 lons in the entire spectral range are redistributed

$\rightarrow E_{crit}^{passing} > E_{injection}$

Mostly-trapped spectrum

 Depletion in spectrum observed for E_λ≤40 keV

$$\rightarrow E_{crit}^{trapped} < E_{injection}$$

Summary

- The DIII-D FIDA suite incorporates 3 systems which weight velocity-space differently
- Experiments indicate that passing fast ions experience stronger transport than trapped
- Drift-kinetic simulation reproduces experimental observation of stronger passing fast-ion transport
- Mechanism differentiating trapped/passing transport: Particle drifts and finite orbit width tend to decouple an ion from the evolving flux surfaces and weaken the effective transport

