# Measurement and Modeling of Intrinsic Torque on DIII-D

## By W.M. Solomon<sup>1</sup>

In Collaboration with K.H. Burrell<sup>2</sup>, J.S. deGrassie<sup>2</sup>, J.A. Boedo<sup>3</sup>, A.M. Garofalo<sup>2</sup>, R.A. Moyer<sup>3</sup>, S.H. Muller<sup>3</sup>, C.C. Petty<sup>2</sup>, H. Reimerdes<sup>4</sup>

- 1 Princeton Plasma Physics Laboratory, Princeton, NJ, USA
- 2 General Atomics, San Diego, CA, USA
- 3 University of California, San Diego, USA
- 4 Columbia University, New York, USA

Presented at the Joint EU-US Transport Task Force Workshop San Diego, CA April 6-9, 2011







- Toroidal rotation can enhance fusion performance through improvements in stability and confinement
- In present devices, rotation is usually driven by external means through neutral beam input, as a by-product of heating
- In future burning plasmas including ITER, torque driven by beams becomes comparatively smaller relative to moment of inertia



# Intrinsic Rotation Must Manifest Itself From Terms in Toroidal Angular Momentum Balance Equation



Independent of velocity



# Intrinsic Torque Profile Can Be Measured With Beams By Zeroing Out Rotation Profile

- With co-current NBI torque, rotation is also co-l<sub>p</sub>
- By adjusting torque slightly counter, rotation is essentially zero across profile
- Intrinsic torque balanced by beam torque

$$\eta_{\scriptscriptstyle NBI} + \eta_{\scriptscriptstyle \mathrm{intrinsic}} = 0$$

$$\rightarrow \eta_{\text{intrinsic}} = -\eta_{NBI}$$





# Intrinsic Torque Profile in H-Mode Plasmas Always Peaked at the Edge

- Intrinsic torque at the edge (0.8 < ρ < 1) found to be</li>
  - Always co-current directed
  - Typically comparable to between 0.5-1 NB source
- Torque inside of mid-radius typically negligible by comparison
- Empirically, what processes contribute to the intrinsic torque?





# Edge Intrinsic Torque Is Well Correlated with Pedestal Pressure Gradient

- Data obtained from power and plasma current scans
- Qualitatively suggestive of turbulence driven stress generating intrinsic rotation
  - Turbulent residual stress can be driven via ExB shear or other profile shear
- Shear in H-mode pedestal may provide mechanism to drive intrinsic rotation in future devices



Solomon et al, PoP (2010)



#### But... Probe Measurements Find Turbulent Stress Does Not Match Intrinsic Torque

- Multi-tip reciprocating probe measures all terms of fluid stress tensor
  - Mostly arises from Reynolds stress contribution
- Discrepancy implies there are additional torques at edge contributing to intrinsic drive



Muller et al, PRL 2011



### Additional Physics Is Required to Understand Edge Intrinsic Torque from Wider Data Set

- Include QH-mode, hybrid plasmas, different shapes (USN, LSN, DN) and toroidal rotation levels
- Relationship between edge intrinsic torque and pressure gradient becomes much less clear
- Almost factor of 3 variation for fixed ∇P<sub>ped</sub> ~ -160 kPa/m





# Intrinsic Drive Appears to Originate from Narrow Region at the Edge

- Edge rotation layer observed within 50 ms of L-H transition
  - At time when core rotation remains low





# Intrinsic Drive Appears to Originate from Narrow Region at the Edge

- Edge rotation layer observed within 50 ms of L-H transition
  - At time when core rotation remains low
- Core intrinsic rotation develops over time
- Therefore, edge layer may contribute "seed" to core intrinsic rotation



See Grierson, after lunch for details on new main ion CER measurements



#### Simple Model of Thermal Ion Orbit Loss Qualitatively Reproduces Edge Rotation Layer

 Estimate velocity resulting from loss cone of counter-going thermal ions whose orbits are lost to divertor

• Thermal ion orbit loss may help explain missing torque





#### Torque from Orbit Loss Expected to Show Dependence on Edge Ion Temperature

 Measure of orbit loss torque made estimating rate at which collisions drive empty loss cone toward Maxwellian

$$\eta_{O.L.} \propto \nu mn \left\langle RV_{\phi}^{\rho=1} \right\rangle$$

- Separatrix velocity in turn dependent on
  - Separatrix ion temperature  $\sqrt{T_i^{\rho=1}}$
  - location of the x-point relative to the midplane separatrix  $R_x / R_{mid}$
- Empirically, add these quantities to regression analysis to understand edge intrinsic torque data set



### Intrinsic Torque Persists Even in Plasmas With Finite External Momentum Input

#### Weak dependence of intrinsic torque on rotation

 Enhanced at rapid rotation by approx 0.25 Nm per 100 km/s of velocity at top of pedestal

- Intrinsic torque increases with β<sub>N</sub>
  - Partially due to changes in  $\nabla P_{ped}$





# Consideration of Various Empirical Quantities Gives Excellent Predictor of Edge Intrinsic Torque

- Pedestal pressure gradient ( $\nabla P_{ped}$ )
- Orbit loss physics (T<sub>i</sub>, R<sub>x</sub>)
- Finite rotation effects ( $V_{\phi}$ )

$$T_{\text{intrinsic}}^{\text{edge}} = -2.80 \times 10^{-3} \nabla P_{\text{ped}} (\text{kPa/m}) + 0.38 \sqrt{T_i^{\rho=1} (\text{keV})} + 0.56 V_{\phi}^{\rho=0.9} (100 \text{ km/s}) + 0.16 \frac{R_x}{R_{mid}}$$

- $R^2 > 0.9$  (vs 0.34 for  $\nabla P_{ped}$  only fit)
- Intrinsic torque predicted within ~0.2 Nm



Solomon et al, NF (submitted)



WM Solomon/TTF/Apr2011

# Empirical Model of Intrinsic Torque Is Used to Model Intrinsic Rotation Evolution Following L-H Transition

#### • Build model based on:

- Spatially and temporally constant  $\chi_{\phi}$
- Pinch velocity V<sub>pinch</sub> calculated in TRANSP based on theoretical models
  - Previously showing reasonable agreement with experiment
- Boundary condition V<sub>0</sub> from Mach probe measurement
- Intrinsic torque density profile
  - $\begin{aligned} \eta_{\text{intrinsic}}(\rho, t) &= 0 & \text{for } \rho < 0.8 \\ &= c(t)(\rho 0.8) & \text{for } 0.8 < \rho < 0.96 \\ &= \eta_{RS}^{probe}(\rho, t) & \text{for } \rho > 0.96 \end{aligned}$

with c chosen so as to match model for edge intrinsic torque





# Empirical Intrinsic Torque Profile Model Plus Simple Transport Model Is Sufficient to Reproduce Rotation

- Intrinsic rotation profile measured shot-toshot with NBI blips at different delays
- Simulate intrinsic rotation evolution inside ρ<0.99</li>
- Narrow rotation layer semi-quantitatively reproduced and persists in time
  - Only possible with inclusion of intrinsic torque profile







# Conclusions

- Plasma edge capable of generating an intrinsic torque that is robustly observed in all H-modes
- Contributions to edge intrinsic torque include
  - Pedestal pressure gradient (residual stress)
  - Separatrix temperature, X-point location (thermal ion orbit loss)
  - Enhancement / positive feedback with velocity
- Empirically determined expression for edge intrinsic torque serves as excellent predictor
- Intrinsic rotation evolution after L-H transition consistent with modeling based on calculated intrinsic torque





