Sheared flow dynamics in edge turbulence*

D. A. D'Ippolito, J. R. Myra and D. A. Russell Lodestar Research Corporation, Boulder, Colorado

Presented at the *Joint US-EU Transport Taskforce Workshop* San Diego, CA, April 6 – 9, 2011.

*Work supported by USDOE grant DE-FG02-97ER54392

Introduction

- Core confinement in tokamaks is sensitive to edge profile gradients.
- The edge profiles are set by turbulence, so it is important to understand the mechanisms of turbulence saturation and how these influence the edge gradients.
- For typical edge profiles, there is no scale separation between background and turbulence, $k_{\perp}L_n \sim 1$.
- Edge turbulence studies require a "global" code (with edge and SOL profiles free to evolve), not a "local" or flux-tube code. Here, we use the 2D SOLT (SOL turbulence) code.
- We are studying the roles of
 - *pressure profile modification*
 - Reynolds stress and sheared flows
 - radial variation in geometry and physics (open and closed field lines, drift wave, curvature driven and sheath regions)

Outline

- Quasi-linear calculations for Kelvin-Helmholtz (KH) and interchange modes
- Overview of SOLT turbulence simulations
- Comparison of quasi-linear theory with simulations
- Conclusions

Quasi-linear model

• Interchange and Kelvin-Helmholtz (KH) stability is given by

$$(\omega - k_y v_y)(\Phi'' - k_y^2)\Phi + k_y v_y'' \Phi + \frac{k_y^2 n_0'}{n_0 (\omega - k_y v_y)} \Phi = 0$$

- BCs: $\Phi \to 0 \text{ as } x \to \pm \infty$
- Inputs: k_y and profiles $n_0(x)$ and $v_y(x) \Rightarrow$ scalelengths L_n and L_v
- Compute the Reynolds' stress (RS)-generated $dv_y(x)/dt$. \Rightarrow the sign of $dv_y(x)/dt$ depends on k_yL_n and L_v/L_n .
- Let $L_n = 1$ so that length scales are normalized to L_n .

Constant velocity shear $(L_v >> L_n)$

 $k_{y}L_{n} = 0.6$ Interchange growth rate γ vs k_vL_n n_e 0.8 $\frac{dv_y}{dv_y}$ 1.0 $v'_{v} = 0$ dt 0.6 0.5 -0.70.4 0.0 $\overline{2.0}^{\mathrm{X}}$ 1.5 -0.50.0 0.5 1.0 -1.20.2 -0.5Vy 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 $-1.0^{[}$ 0.0 k_{y}

RS tries to increase the v_y gradient at the mode center \Rightarrow ZF instability

Constant v_v shear \Rightarrow no KH mode.

Shear stabilizes the interchange mode and is most effective at high k_v.

Localized v_y shear $(L_v \sim L_n)$

The amp = 0.5 case is largely interchange driven.

Note dependence of growth rate on k_vL_n:

- (a) small $k_y L_n \implies \gamma \rightarrow 0$ for all instability drives (flows are not important)
 - (b) intermediate $k_y L_n \implies$ flows are do (c) large $k_y L_n \implies$ flows stabil
- \Rightarrow flows are destabilizing (KH mode)
 - \Rightarrow flows stabilize interchange mode

Effect of the RS depends on kyLn

amp << 1 for both cases \Rightarrow pure interchange instability drive

 $k_y L_n >> 1 \Rightarrow RS$ tries to increase the gradient in v_y at the mode center, enhancing the flow that was present.

$k_y L_n \le 1 \Rightarrow$ The RS opposes the existing flow.

Quasi-linear picture

From these and other cases, varying the shapes of the profiles and the scale lengths, we obtain the following picture of how curvature-driven interchange modes interact with sheared flows:

- Pure KH modes act to reduce the v_y shear driving them (at least locally, although this may increase the shear elsewhere).
- Shear in v_y stabilizes the interchange mode and is most effective on the high k_y modes.
- The Reynolds Stress (RS) from pure interchange modes acts to enhance the imposed flows if the flows are large-scale with respect to the mode's radial variation, while the RS opposes the seed flows if those flows are small scale.

Quasi-linear picture - 2

- An important implication of this work is that long wavelength modes (with respect to the pressure gradient) cannot be stabilized by self-generated sheared flows; instead, they must be stabilized by pressure profile modification (wave-breaking, plateau formation). This agrees with the SOLT simulations described subsequently.
- Finally note that these results suggest that the inverse cascade in k_y may be responsible for this behavior:
 - Large k_y, associated with small-scale radial mode structure, feeds the (larger-scale) flow.
 - Small k_y, associated with large-scale radial mode structure, saps the (smaller-scale) flow.
- This picture is in qualitative agreement with SOLT simulations of turbulence saturation as a function of radial gradients

Quasi-linear picture - 3

For comparison with the SOLT turbulence simulations, summarize the results of the quasi-linear calculations for curvature-driven interchange modes in the following table:

	$L_v \leq L_p$	$L_v >> L_p$
$k_y L_p >> 1$	RS+	RS+
$k_{y}L_{p} \leq 1$	RS-	RS+

where $RS+(RS-) \Rightarrow$ the Reynolds Stress (RS) acts to increase (decrease) the flow shear at the mode center.

RS+ is the usual ZF instability found in flux-tube (local) simulations. RS- requires a global turbulence code (e.g. SOLT).

SOLT turbulence studies

We have done a study of the saturation of the turbulence as a function of the instability drive $\gamma_0 \propto dP/dx$ (P = n T)

Large gradient case

run32 Quasi-steady state:

Below: shaded area indicates FWHM of particle flux Γ = <n v_x>

 \Rightarrow **RS- regime near max** Γ

 \Rightarrow flows are not strong enough to stabilize interchange modes)

 $\left< v_{y}^{\prime} \right>_{y,t} / \left< \gamma_{mhd} \right>_{y,t} \approx 0.6$ $\left< k_y L_p \right>_{y,t} \approx 1.2$

Lodestar

Small gradient case

run33 Right: note different initial transient and fluctuation behavior than in run32

Below: shaded area indicates FWHM of particle flux $\Gamma = \langle n v_x \rangle$

- \Rightarrow **RS+ regime near max** Γ
- \Rightarrow sheared flows help stabilize interchange modes

$$\left\langle \mathbf{v}_{\mathbf{y}}^{\prime} \right\rangle_{\mathbf{y},\mathbf{t}} / \left\langle \gamma_{\mathrm{mhd}} \right\rangle_{\mathbf{y},\mathbf{t}} \approx 2.4$$

$$\left[\left\langle \mathbf{k}_{\mathbf{y}} \mathbf{L}_{\mathbf{p}} \right\rangle_{\mathbf{y},\mathbf{t}} \approx 7.5 \right]$$

Regime diagram for SOLT study

Plot of particle flux Γ vs interchange growth rate γ_0 (see p. 11)

Saturation mechanisms

- $1 \Rightarrow \text{flow} + \text{profile mod}$
- $2 \Rightarrow \text{profile mod only}$
- $3 \Rightarrow$ flow only (frozen profiles)
- y- and t-averaged flux
- evaluated at radial location of max flux Γ

blue curve \Rightarrow stabilizing effect of sheared flow decreases rapidly as grad-P increases and k_v L_p decreases (agrees with the quasi-linear model)

Conclusions: emerging picture

- Here we have studied curvature-driven interchange turbulence in the edge plasma, saturated by a combination of
 - sheared poloidal flows
 - radial profile flattening
- The dominant saturation mechanism depends on the radial gradients.
- The experimental geometry (changing topology of magnetic field lines) sets the natural radial scale L_x of the edge turbulence.
- The radial mode structure of the turbulence, and profiles, determine the k_y spectrum, and $k_y L_x$ determines the evolution of the sheared flows.
- The relative ordering of k_y, L_p, and L_v (pressure and sheared velocity scale lengths) influences the sign of the Reynolds Stress (RS) and whether it causes the sheared flows to grow (RS+) or damp (RS-)
 - this may be related to the inverse cascade
 - see pp. 8 10 for details

Conclusions (cont.)

- The RS regime influences the saturation mechanism for the interchange turbulence
 - RS+ \Rightarrow shear flow stabilization
 - RS- \Rightarrow profile flattening
- When the mode significantly overlaps with the DW region inside the edge or the sheath-connected region in the far SOL, additional physics enters:
 - DW \Rightarrow directionality, poloidal flows
 - sheath \Rightarrow sink for particles, heat and momentum;

Bohm sheath-potential-driven flows

• Preliminary comparisons with SOLT turbulence simulations are encouraging but more work is needed to obtain optimal simulations for this comparison.