Source Driven Free
Boundary Modes

Eugene Y. Chen

. L. Berk

Borls Breizman
L.-J. Zheng

IFS, UT Austin



Outline

The AEGIS formalism

Free Boundary TAE

The source inversion code

Driven modes — benchmark near eigenfrequency
Second Harmonics of C-Mod TAE

Conclusions



The AEGIS Formalism (1)

AEGIS 1s an 1deal MHD ei1genvalue code.

It solves the magnetic displacement 1nside a
toroidal plasma:

FEHREY - K- 067 =

It assumes the toridal plasma 1s surrounded by a
vacuum region, enclosed by a perfectly
conducting wall.



The AEGIS formalism (2)

= In the vacuum region,
magnetic scaler
potential 1s solved:

Vu=0
= AEGIS matches the
plasma solution and
the vacuum solution

at the plasma—
vacuum interface.




The AEGIS formalism (3)

The process can be divided into two steps. (1) solving independent solutions
in each region. (i1) solve for the linear combination for an exact match — this
poses an eigenvalue problem: ~

The matrix L contains the boundary values of the M (total # of poloidal
harmonics) independent plasma homogeneous solutions and the matching
conditions.



Application: Free Boundary
TAE

= We made parametric
study of TAE 1n free-
boundary setting.

= Wall position and other
equilibrium
parameters are taken
as 1nput.

= We consider an
equilibrium with a
single TAE gap.



Wall-Frequency Relation

= The frequency of
eigenmode decreases
with increasing distance
of wall from plasma
boundary.

= A new branch of TAE
appears only with finite
wall distance. In this
particular equilibrium,
the critical distance 1s
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Mode Structure
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The Source Inversion Code

= AEGIS was upgraded to deal with plasma driven by a source
term.

(FE + K" - Kig¥ - ¥ = S

= A particular solution that has zero magnetic displacement at the
plasma—vacuum interface is solved. We record the force
exerted by the particular solution as ug

= It can be shown that the solution which satisfies all the
boundary conditions can be found by solving the matrix
equation:

Lo +ub =0



Driving the plasma with
varying vacuum gap size (1)

= We prepare a test driving source for the purpose of

illustration: 2 = sy (71‘ w) i(0—p+wot)

= We chose wg to be 0.385 Vai/R.

= It 1s the eigen frequency of the lower branch TAE
provided b/a=1.07 .




Driving the plasma with
varying vacuum gap size (2)
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Driving the plasma with
varying vacuum size (3)

= The shape ot the mode 1s found to be similar to the
eigenmode instead of the driving source it the
driving frequency is close to the eigenfrequency.

= Resonance 1s observed as vacuum gap size varies.



Application: 2" harmonics
in C-Mod TAE

= 2" harmonics of AE is
observed in Alcator C- 600

Mod. Its structure can be Ff,’-’\_
compared with PCI = 0 Q e h
measurements (Edlund et~ 2 400 - I\
al. 2009) J f / /

= With the upgraded version of ;‘I - / '/ /
AEGIS, we are able to 2001 |
calculate this structure - o

numerically. 0.100 0.125 0.150 0.175 0.200

time [sec]



Numerical Scheme (1)

= The 2" harmonics is needed to fully balance the un-
linearized momentum equation.

= On the other hand, we only have a linear MHD
solver which 1gnores the convective derivative
term (and consequently, the 2" harmonics).

= However, 2™ harmonics can be restored by treating
a few quantities derived from the fundamental
mode as a driving source.



Numerical Scheme (2)

= (Smith et al. 2006)

dmpyvy — (V X By) XV X (v; X By)
—[VX ¥V X (v; X By)] X B;=0,

4wpﬁvg—(? X B{}) XV X (1’2 X B.[})
—[VXV X(vya X By)] X By
=(VXBy) XVX(v; XB)+[VXVX(v; XB,)]

d
X B{}'l‘ ;[—417'.0(}("] . v)‘v] + (Bl . v)Bl - 4?T.U|i"|



Numerical Scheme (3)

As the quantities we calculate depend on the coordinate
used. Extra care needs to be taken: e.g.,

U= e " (v (1, 0)JVO x YV +va(2p,0) IV x Vi + vs(2), !9) SV x V)

Mmaox

irm b
v, 0 E v:_.m ()e

M=Mmin
(v V) = %e_%’”‘:(éliMGlgvgvg — 2inG1303 + viGY, — v5Ghy — 20903Gles — V3 Glag
+2G11v1(2iMug — invs + 1)) + 2G 12 (iv2(2Mug — nvs) + v105) + 2G 13005 V)
—%ie_ﬁnc(MGuvf — 3MGnvi 4 2MG 130103 + 2nGaovavz — 2MGasvavs
+2nGa3v; + MGa3v; + 2ivi Gy + 2iv105Ghy + 2iv,03Gh,
+2G 150 (—Muy 4+ nvg + iv]) + 2iGoov 05 4 2iGozv,05) VO
—|—e‘2£nc(2iMGggvgvg — inGggvg‘ + i}f@m + v119GYhs + v1v3G 5,

+G1301(2iMug — invs + vy) + Gag(iva(2Mug — nws) + v105) + Gazvivs)V(






Conclusions

= AEGIS has been upgraded to include source
Inversion.

= The new subroutine has been checked with driving
frequency close to the TAE frequency. The
results are consistent with what we expect.

= The code will be applied to the evaluation of 2™
harmonics of Alfven Eigenmodes.
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