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1. Motivation 2. The drift-reduced approximation

The drift-reduced approximation (DRA) assumes that the ions perpendicular dynamics is dominated by
the E x B and diamagnetic drifts, and the polarization drift is computed to zeroth order,
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q /'B E At the MPSE ions inertia becomes important compared to the

s, 7 magnetic force and they get deflected by the electric field.

— z Instead, electrons remain magnetized almost all the way up
X y to the wall.

The location of the MPSE is derived using the method recently described in [4]. In the I|m|t I < Te and
V = 0y, the presheath condition n; = ne and V;, = Vg, g leads to a matrix system MX — S where
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In the presheath, gradients are small and due to the presence of sources. At the MPSE, non-zero gradients
can be sustained without sources and V;, = Vg is still valid.

This leads to MX ~ 0 at the MPSE, and X # 0 imposes det(M) = 0, giving
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ot nay ay posed at the magnetic presheath entrance (MPSE).
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e, 4?} + 2 P where 0 = 0y Viy/wei, VeEx = —Ex/B is the drift velocity due to an external electric field Exy.
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5. Numerical verification

6. Effects of perpendicular gradients

Numerical simulations were performed with ODISEE (One-Dlmensional Sheath Edge Explorer) [4], a

1d3v PIC code solving the Vlasov-Poisson system for a plasma between two absorbing walls. ~ Normal gradients 0y are in the ps scale and perpendicular gradients along x are in a scale L > ps.

» The gradient operator is written as dx ~ /L where ¢ = 41 is the sign of the gradient.

-l < Te » Only terms of order ¢ = ps/L are kept.
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 Sp(x,V) = S Frnax(V) This leads to a modified matrix,
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» Potential drop as a function of «
x =1 (10)
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; + i IS because here we treat self-consistently the presence of E x B gradients through Faraday’s law.
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