

Supported by

High resolution global mode structure measurements via multichannel reflectometry in NSTX*

College W&M Colorado Sch Mines Columbia U CompX General Atomics INL	WAPe
Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI	*Supj
Princeton U Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Illinois U Maryland U Rochester U Washington U Wisconsin	

Neal A. Crocker UCLA

WAPeebles,¹ S Kubota,¹ J. Zhang, GY Fu,² M Podestà,² and ED Fredrickson²

¹ UCLA, ²PPPL

Joint US-EU Transport Taskforce Workshop San Diego, CA April 6–9, 2011

*Supported by USDOE Contracts DE-FG02-99ER54527 and DE-AC02-09CH11466

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA **Hebrew U** loffe Inst **RRC Kurchatov Inst** TRINITI **KBS** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Summary

- Global modes—kinks, tearing modes, Alfvén eigenmodes (AE)—play critical role in many aspects of plasma performance
- Global mode structure routinely measured in NSTX via array of fixed frequency reflectometer to facilitate comparison with theory
- *Reflectometer array upgraded* to increase spatial resolution and range of accessible plasma densities
 - 16 channels \Rightarrow significantly improved spatial sampling
 - − cutoff $n_0 \sim 1 7 \ge 10^{19} \text{ m}^{-3} (30 75 \text{ GHz}) \Rightarrow$ improved access to H-mode plasmas
- Initial results from new array include structure measurements of global & toroidicityinduced AEs (GAE & TAE), as well as coupled kink-tearing modes (NTM)
- GAEs highly core localized, consistent with expectation
 - structure measured in *previously inaccessible* high density H-mode plasmas
 - advances study of GAE-induced electron thermal transport (K. Tritz, P-2)
- TAEs exhibit strong phase variation with radius in midplane
 - suggests non-ideal MHD effects
 - roughly consistent with M3D-K prediction (G. Fu, EP-I)
- Tearing mode structure shows coupling to external kink
 - Measurement illustrates potential for investigation of tearing modes

WARTX UCLA TTF 2011 – High resolution mode global structure via multichannel reflectometry in NSTX (Crocker) Apr. 6–9, 2011

2

Motivation: measurement of global mode structure promotes better understanding of plasma performance

- Global modes—kinks, tearing modes, Alfvén eigenmodes (AE)—play critical role in many aspects of plasma performance
 - kinks & tearing modes: change profiles and cause bulk transport
 - AEs cause fast-ion transport and loss:
 - change equilibrium sources (momentum, energy ...)
 - damage plasma facing components
- NSTX plasmas feature rich spectrum of global modes
- Mode δn structure routinely measured in NSTX via fixed-frequency reflectometer radial array— upgrade improves spatial resolution & range of accessible plasma conditions
 - 16 channels, $n_0 \sim 1 7 \ge 10^{19} \text{ m}^{-3} (30 75 \text{ GHz})$

Reflectometers measure local density fluctuation in plasma

- Microwaves propagate to "cutoff" layer, where density high enough for reflection ($\omega_p = \omega$)
 - Dispersion relation of "ordinary mode" microwaves: $\omega^2 = \omega_p^2 + c^2 k^2$, ω_p^2 proportional to density ($\omega_p^2 = e^2 n_0 / \varepsilon_0 m_e$)
 - $k \rightarrow 0$ as $\omega \rightarrow \omega_p$, microwaves reflect at k = 0
- Reflectometer measures path length changes of microwaves reflected from plasma
 - phase between reflected and launched waves changes ($\delta \phi$)
- Wave propagation controlled by density
 - for large scale modes $\delta n/n_0 \sim \delta \phi/(2k_{vac}L_n)$, $L_n = n_0/|\nabla n_0|$

Reflectometers provide radial array of measurements

NSTX cross-section at Bay J 30-50 GHz 55-75 GHz (not shown: horns modified to

optimize for frequency range)

🔘 NSTX U

- Two arrays of reflectometers: "Q-band" & "V-band" –Q-band: 30, 32.5, 35, 37.5, 42.5, 45, 47.5 & 50 GHz –V-band: 55, 57.5, 60, 62.5, 67.5, 70, 72.5 & 75 GHz
- Single launch and receive horn for each array.
 –Arrays separated ~ 10° toroidally
- Horns oriented perpendicular to flux surfaces ⇒ frequency array = radial array
- Reflectometer cutoffs span large radial range in high density plasmas ($n_0 \sim 7 \ge 10^{19} \text{ m}^{-3}$)

Apr. 6-9, 2011

GAEs localized to plasma core

- GAE structure measured in H-mode plasma GAEs core localized
- Activity correlates with enhanced electron ulletthermal transport in plasma core (K. Tritz, **P-2**)
- Measurements aid investigation ullet
 - will be compared with theory (HYM, NOVA-K)
 - will be used in predicting thermal transport via _ perturbed electron orbit calculation (ORBIT, SPIRAL)

GAE structure

0.3

0.2

0.1

0

ມີ (mm)

141398

f≠401 kHz

f=633 kHz f=648 kHz

f≑726 kHz

t = 580 - 583 ms

TAEs show strong radial phase variation

TAE phase variation similar to M3D-K prediction (see also G. Fu, EP-II)

- M3D-K solves for TAE eigenmode in NSTX plasma
 - initial value code
 - MHD plasma coupled to kinetically treated energetic ions
- Reflectometer response (ξ) modeled for M3D-K δn (i.e. "synthetic diagnostic")
 - WKB approximation for path length (L) used:
 - L = integral of sart($1-\omega_2/\omega^2$) from edge to Rc,

$$L = L_0 + \xi = \int_{edge}^{\omega_P^2(R) = \omega^2} \sqrt{1 - \omega_P^2(R) / \omega^2} dR$$

- M3D-K structure [|ξ| & phase(ξ)] similar to NSTX, but shifted radially inward ~ 7 cm
 - further work needed to understand shift

Measurement of tearing mode structure shows evidence of coupling to external kink

Temporal evolution of displacement

- Reflectometers show 9 kHz, n=1 tearing mode emerge at t ~ 0.865 sec
 - MPTS shows flattening of $n_e \& T_e$ at R ~ 1.21 m develop between t ~ 0.865 0.9 sec
- Structure measured for R > ~ 1.27 m: resembles external kink
 - ξ growing R ~ 1.27 1.34 m
 - ξ constant R ~ 1.34 m to edge
- Measurement illustrates potential for investigation of kink-tearing mode coupling

WNSTX UCLA

Conclusions

- Global modes—kinks, tearing modes, Alfvén eigenmodes (AE)—play critical role in many aspects of plasma performance
- Global mode structure routinely measured in NSTX via array of fixed frequency reflectometer to facilitate comparison with theory
- *Reflectometer array upgraded* to increase spatial resolution and range of accessible plasma densities
 - 16 channels \Rightarrow significantly improved spatial sampling
 - − cutoff $n_0 \sim 1 7 \ge 10^{19} \text{ m}^{-3} (30 75 \text{ GHz}) \Rightarrow$ improved access to H-mode plasmas
- Initial results from new array include structure measurements of global & toroidicityinduced AEs (GAE & TAE), as well as coupled kink-tearing modes (NTM)
- GAEs highly core localized, consistent with expectation
 - structure measured in *previously inaccessible* high density H-mode plasmas
 - advances study of GAE-induced electron thermal transport (K. Tritz, P-2)
- TAEs exhibit strong phase variation with radius in midplane
 - suggests non-ideal MHD effects
 - roughly consistent with M3D-K prediction (G. Fu, EP-I)
- Tearing mode structure shows coupling to external kink
 - Measurement illustrates potential for investigation of tearing modes

WARTX UCLA TTF 2011 – High resolution mode global structure via multichannel reflectometry in NSTX (Crocker) Apr. 6–9, 2011

10

Backup Slides

WNSTX UCLA TTF 2011 – High resolution mode global structure via multichannel reflectometry in NSTX (Crocker) Apr. 6–9, 2011

NSTX plasmas feature rich spectrum of global modes

Fluctuation spectra of beam-heated NSTX plasmas

- Tearing modes (TM) and internal kinks – f ≈ 25 kHz
- Energetic particle modes (EPM) f
 ≈ 75 kHz
- Reversed shear and toroidicityinduced Alfvén eigenmodes (RSAE & TAE) – 50 kHz ≤ f ≤ 250 kHz
- Global and compressional Alfvén eigenmodes (GAE & CAE) – 400 kHz ≤ f ≤ 3 MHz

Reflectometer array design exploits nonlinear transmission line

