The effect of anomalous electron viscosity on magnetic reconnection* Ilon Joseph and Xueqiao Xu Lawrence Livermore National Laboratory, Livermore, California, 94551

Anomalous electron viscosity has been invoked to explain magnetic reconnection events both in the core [1] and at the edge [2] of fusion plasmas. Kinematic electron viscosity μ_e is equivalent to hyper-resistivity $\eta_H = \mu_e d_e^2 = 2.8 \times 10^{-6} \mu_e (n_e/10^{19} \text{m}^{-3})$, where d_e is the electron skin depth. If set by anomalous processes [3], μ_e may increase with temperature as in gyro-Bohm scaling and could achieve values on the order of ~1 m²/s at the plasma edge. Thus, one expects that hyper-resistivity will dominate resistivity, $\eta_R = 0.021 \text{ m}^2/\text{s } T_{\text{keV}}^{-3/2}$, at small enough distances and high enough temperatures. For the parameters above, hyper-resistivity dominates for spatial scales below $(\mu_e/\eta_R)^{1/2} d_e \sim 1 \text{ cm}$.

Hyper-resistivity can increase the rate of reconnection γ by increasing the width of the reconnection zone δ relative to its length *L*. If plasma flows out of the reconnecting layer at the Alfvén speed V_A , conservation of mass limits the reconnection rate by the aspect ratio of the layer $\gamma L/V_A \sim \delta/L$. Hyper-resistivity increases both scales to $S_H^{-1/4}$ where the hyper-Lundquist number is $S_H \sim L^3 V_A / \eta_H$ instead of $S_R^{-1/2}$ where the resistive Lundquist number is $S_R \sim LV_A / \eta_R$. If the reconnecting current sheet itself becomes unstable to secondary tearing [4], the hyper-resistive "plasmoid" instability will develop even finer scales $S_H^{-5/16}$ and grow at super-Alfvénic rates $S_H^{-3/16}$.

The stability borders of hyper-resistive modes generally differ from their resistive counterparts. For example, the response to an external magnetic perturbation will be ideal in a plasma that is rotating faster than a critical frequency [4]. The critical frequency is smaller in the hyper-resistive case, $S_{\rm H}^{-1/5}$ rather than $S_{\rm R}^{-1/3}$ when inertia dominates viscosity, and so, less reconnection is expected to occur.

[1] X.Q. Xu, B. Dudson, P. B. Snyder, et al., Phys. Rev. Lett. 105, 175005 (2010).

[2] P. K. Kaw, E. J. Valleo and P. H. Rutherford, Phys. Rev. Lett. 43, 1398 (1979).

[3] H. Biglari and P.H. Diamond, Phys. Fluids B 5, 3838 (1993).

[4] N. F. Louriero, A. A. Schekochihin, S. C. Cowley, Phys. Plasmas 14,100703 (2007).

[5] R. Fitzpatrick, Phys. Plasmas 5, 3325 (1998).

*Performed by LLNL under US DOE contract DE-AC52-07NA27344