Dynamics and Feedback Loops of Particle ITB Formation in OH-plasma

W.W. Xiao^{1,2}, P. Diamond^{1,3}, X.L. Zou⁴, X.T. Ding², J.Q. Dong^{2,5}, L.H. Yao², B.B. Feng², B.S. Yuan², X.M. Song², Z.B. Shi², Y.D. Gao², Y.P. Zhang², X.Y. Han², W.L. Zhong², X.Q. Ji², L.C. Li², Q.W. Yang², Yi Liu², L.W. Yan², X.R. Duan², Yong Liu² and HL-2A team

> *WCI Center for Fusion Theory, NFRI, Daejeon, Korea Southwestern Institute of Physics, P.O. Box 432, Chengdu, China CMTFO and CASS, UCSD, USA CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France Institute for Fusion Theory and Simulation, Zhejiang University, China*

A spontaneous particle transport barrier has been observed in the Ohmic plasma in HL-2A tokamak with no external momentum or particle input except the gas puffing. A density threshold for the barrier formation has been found to be $n_c \sim 2.2 \times 10^{19} m^3$. This experimental result is confirmed using three methods: *I)* density profile analysis, *II)* density perturbation response analysis using Supersonic Molecular Beam Injection (SMBI) modulation and *III*) the plasma E×B rotation profiles. Using gas puff fuelling, density profile analysis shows that the barrier local position and width are $r/a \sim 0.6-0.7$ and 1-2 cm, respectively. The particle transport barrier can be maintained for more than 100 ms, which is greater

than energy confinement time τ_E .

The formation of the barrier appears to coincide with the transition from TEM→ITG turbulence, which is also related to LOC→SOC. Analysis of modulated SMBI studies allows determination of the particle diffusivity (D) and convection velocity (V), and indicates that V changes from outwrard to inward as the barrier is formed. This is also consistent with the evolution from $TEM \rightarrow ITG$ turbulence.

The sharp increase in density gradient in turn results in an increase in $E \times B$ velocity shear in the region $0.6 \lt r/a \lt 0.9$, as shown in Fig. 1. E \times B shear is correlated with barrier formation and the region of reduced density fluctuation levels as was indicated by Doppler reflectometry measurements.

These results suggest a self-regulation feedback loop of enhanced ion heating (transfer $\sim n_e^2$ \rightarrow ITG onset \rightarrow inward convection pinch \rightarrow density gradient→increases E×B shear→density fluctuation and transport reduction \rightarrow ITB formation. This feedback loop appears pertinent to other OH-plasma enhanced confinement, such as the RI-mode and IOC, though the precise mechanism for ∇T_e steepening and ITG onset may differ from case to case. We will discuss the similarities and differences between p-ITB, IOC and RI-mode, as well as the general implications of these results for optimization of the profile structure.

Fig. 1. Radial profile of the perpendicular turbulence rotation velocity with pITB (□ *and* O *) and without pITB* (\triangle) *measured by Doppler reflectometry in different plasma line average density.*