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Outline

• Motivation : Turbulence spreading as a mechanism for fast 
transients, profile resiliency and ITB’s

• Fundamentals of Model
– Spreading ↔ Profiles ↔ Flows : Feedback loops and need for self-

consistency 
– Model equations
– Essentials of front dynamics

• Results from model studies
– off axis heating → ingoing pulses → edge-core connection → 

profile resiliency
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Outline (cont’d)

• Results, cont’d
– intensity pulses can, but need not, penetrate gaps in 

excitation profile
– intensity and heat pulse propagation can decouple in 

barriers
– initial modeling of cold pulse propagation experiments

• The Quandary: Do zonal flow help or hinder spreading?
– physics of wave packet propagation in zonal flow
– spreading and local/non-local interaction in k

• Conclusions and Discussion
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Motivation

• Some unresolved puzzles:

– Cold pulse propagation:
ücool edge – core heat on ~ 1 msec
üindications of ‘ITB’ at inversion radius
üquenched for n > ncrit

– Profile resiliency (stiffness):
üwhy do temperature profiles tend to exhibit small 

response to large perturbation ?
üedge + center heating: peaked profiles?
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Motivation (cont’d)

• Some unresolved puzzles, cont’d
– ITB’s:

ü physics of threshold ?
ü when can avalanches penetrate nascent barrier?

• A highly relevant player in all-of-above:
– Turbulence Spreading !
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Fundaments of Model
• Spreading and Self-Consistency

– “spreading” = tendency of turbulence to self-scatter 
(i.e. vortex mutual induction) and entrain stable 
regime

– “spreading” closely linked to “avalanching”, 
“avalanching” = tendency of excitation to propagate in 
space via local gradient change

– Minimal model must:
ü treat intensity profiles, flows (ExB) self-consistently
ü be flux driven
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Fundaments of Model (cont’d)

self-scattering gradient feed-back

Close relationship of dynamics self-consistent profiles, flows, intensity a MUST

• Relation: Turbulence Spreading ↔ Avalanching
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Fundaments of Model (cont’d)
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• Model:  Extended Fisher-Kolmogorov System
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Fundaments of Model (cont’d)
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Bi-stability of Heat Flux 
due Shear Feedback

• Model:  Extended Fisher-Kolmogorov System
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Fundaments of Model (cont’d)
• Fisher-Kolmogorov Fundamentals

– Supercritical Reaction-Diffusion System
– Leading edge – mesoscale

– Vf ~  (γD)1/2 ~ 
1. α = 1   →   Gyro Bohm D;   Vf ~ V*

2. α = 1/2   →   Gyro Bohm D;   Vf ~
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Results
• Computational Model Set-Up: Fixed Q Drive
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Result (cont’d)
• Intensity and Heat Pulse Propagation

– pulse initiated near edge
– heat flux Q applied in center

– pulse maintains/ending edge during inward propagation

t = 00.20.40.60.8

I

T
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Result (cont’d)
• Spreading: possible explanation of profile resilience !?!
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Results (cont’d)
• Scaling: Intensity Pulse Speed vs. Q

– Vf(Q)  bi-stable

– intensity pulse speed first ~ Q1/2, then 1/Q
– quantitatively consistent with analysis
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Results (cont’d)
• Scattering experiments: Pulse Penetration of Gaps

– Intensity pulse scattering from linear excitation gaps
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Results (cont’d)
• Intensity pulse penetration depth vs. Q

– Q can block pulse penetration of excitation gap

a. narrow gap  Q > Qcrit ~ 7 MW 
to block 

b. narrow gap, decreased 
shearing → Qcrit increases

c. large gap, Qcrit decreases
d. damped gap, ~ no penetration 

for any Q



18

Results (cont’d)
• What here we learned so far?

– self-consistent intensity, profiles, flows required
– turbulence spreading can rapidly re-distribute 

excitation  →  fast intensity pulse as means for 
profile resiliency !?!

– Vf(Q) is bi-stable
– pulse scattering experiments suggest that 

• gap penetration is variable
• Q can block intensity pulse

∴ Is ITB formation related to keeping turbulence out, 
as well as heat in ?
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Results (cont’d)
• To the Cold Pulse: Turbulence spreading and “Non-locality”

– cold pulse as edge + center, with negative edge source
– fast intensity pulse to center; 
→ some T profile steepening →  closer look ?!

0t +1ms+2ms+3ms

msec  1~ft
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Results (cont’d)
• Turbulence spreading and “Non-locality”: Cold Pulse Propagation

0.4

• t vs r plots of heat and intensity pulse
• ~ constant Vf  manifested
• more structure in I

• model manifests (weak) inversion !
• ∇T steepening due self-consistent 

shearing (Q bi-stability) is cause
• ITB?  ↔ sustain?
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The Quandary of Zonal Flows

• Do zonal flows help or hinder the spreading? If 
promote, how effective?

• The conflict:
– natural expectation re: shearing

– symmetry breaking effect on wave packet propagation

– purely non-local interaction (in scale)

– non-local + local interaction

vs.

vs.

and
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The Quandary of Zonal Flows (cont’d)
• Zonal spreading

– mechanism is linear group propagation
– i.e. for Rossby waves

for symmetric spectrum <kxky> = 0 → <vgy> = 0 no propagation
– if zonal shear:

– shear “correlates” ky, kx → no ambiguity in <kxky> but
– inertia k2 increase in time → efficiency?
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The Quandary of Zonal Flows (cont’d)
• Zonal spreading, cont’d

– n.b. not sufficient to establish propagation, need to 
establish/quantify:

a. penetration, i.e. how far does turbulence penetrate into stable/damped 
region?

b. efficiency, i.e. how much of initial source is radiated?

• analysis must include: growth/damping profiles and 
dissipation

• analysis should be non-perturbative, i.e. NLS models will 
miss enhanced inertia
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The Quandary of Zonal Flows (cont’d)
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The Quandary of Zonal Flows (cont’d)
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The Quandary of Zonal Flows (cont’d)
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The Quandary of Zonal Flows (cont’d)
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The Quandary of Zonal Flows (cont’d)
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The Quandary of Zonal Flows (cont’d)
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The Quandary of Zonal Flows (cont’d)
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The Quandary of Zonal Flows (cont’d)

Bottom Line:

Zonal Flows may help spreading, 
but only a little…
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Key Issues

• Theory
– extend model to include <Vφ>, <Vθ> and <n> evolution
– improve representation of scattering → i.e. beyond 

intensity diffusion (i.e. local + non-local interaction in k)
– WKE + Zonal models and mean profiles
– fractional kinetics formulation → how calibrate?
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Key Issues

• Phenomenology
– resilience: spreading and/or heat pinch (L. Wang, 

P.D. ‘11)
– physics of inversions in cold pulse? shear flow or ? 

barrier evolution?
– ncrit → OH power coupling?
– spreading through 

• reversed shear
• low order rationals

– periodic excitation →  SMBI

?


