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e Peaked density/pressure plasmas observed in the
Large Helical Device

e Build-up process
e MHD property of LHD

e Collapse event and ballooning mode

° Summary L = 2, m=10 Heliotron type device
R=35-3.9m, a~ 0.6m

NBI(tangential) ~ 15MW
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MHD instabilities and hiah-B operational reaime
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In outward shifted case,
we achieve a peaked
pressure profile. We
discuss the beta limit in
this kind of discharges.



How to make the Peaked Profile
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W Particle transport coefficient o

relationship between time
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Increase of the B, is
disturbed by a collapse event,
(so-called core density
collapse( ) ). CDC is an
abrupt event where the core
density is collapsed within 1
ms. (much faster than other
MHD relaxation events in the
LHD)

By CDC, central beta is
decreased by ~50%.

MHD events is a candidate
since the process is very fast.
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[ypical lota profile and well/Hill boundary

In LHD, pressure magnetic hill

gradient driven modes < » Low beta
are important; T Y O e B A
stability depends on L 1/q

magnetic well depth. 1.0f

With increase of beta, - B=1.3%

the well region "
expands. (core ' } i
instabilities vanish.) [ p=0.0% :
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Growth-rate Is calculated by Hn-Bal code
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Growth rate are calculated increasing the
central beta value.

High-n ballooning mode is destabilized in
Magnetic hill region when central beta is
increased.

Growth rate is estimated in the outboard side
of horizontally elongated section. We expect
mode structure even in the vertically
elongated section.

. Localized in the outboard [region
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CDC reqgion and Ballooning unstable reqgion
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e Experimental data(A) is organized by magnetic axis position and the
central beta.

e CDC appears where growth rate is rapidly increasing.



Maagnetic field and diagnostics in LHD
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e Most of the fluctuation diagnostics in LHD is line-integrated ones.
e We use vertically elongated section to compare in/out asymmetry.



Pre-cursor observed in COZ2 interferometer
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Oscillations just
before CDC is
observed only in
outboard side.
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experiments.




Profile of pre-cursor like oscillations
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Location of the fluctuations are
consistent with the calculation of Hn-
bal code.

Error in the estimation of p is not
small (Ap—~0.2) since the distance of
the flux surfaces are quite small in
the outboard side.

Inner peak (p—~0.3-0.5) might be
caused by the line-integration effect.



harrow mode affects the whole profile?

Candidate 2

e Ergodization of the magnetic
field is expected from the non-
linear simulation. (N. Mizuguchi et
al Nucl. Fusion 49(2009) 095023)

eParticle flux is enhaced due to
the parallel particle flux.
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Candidate 1

e At the beginning, flattening of the edge region (p—~0.8) is observed.
e The stability at inner area becomes worse after the flattening.
e Large scale MHD instability are triggered by this.




Summar

e Fairly peaked density/pressure profile is observed with multiple
pellet injection in LHD. The limit of the pressure gradient is
determined by MHD collapse events.

e This collpase is related with the high-n ballooning mode.
— Collapse appears where the ballooning mode is unstable.

— Precursors, localized in the code predicted region, are
sometimes observed.

Mistery to be studied

 Though the mode structure and precursors are well localized
(Ap < 0.2), whole plasma is affected by this event. Different from
ELM events in tokamak H-mode.

e Core localized MHD instabilities (m=1?) might be related with this.



