How micro-turbulence breaks magnetic surfaces

W.M. Nevins, E. Wang (LLNL) and J. Candy (GA)
Important collaborators …

- From IPP Garching:
 - Frank Jenko,
 - M.J. Pueschel,
 - F. Merz

- Formerly U of Wisconsin (and now IPP Garching):
 - David Hatch

- PPPL
 - Walter Guttenfelder
Equilibrium field structure and rational surfaces

- **q-profile across flux-tube**
 \[q(r) \approx q(r_0) + q'(r - r_0) \]
 \[\approx q_0 \left[1 + \left(\frac{\rho_i}{r_0} \right) \widehat{s} \left(\frac{r - r_0}{\rho_i} \right) \right] \]

- **At rational surface** \(q = m/n \)
 \[\sim \frac{1}{n} \quad \sim \rho^* \]
 \[\left(\frac{m}{n} - q_0 \right) = \left(\frac{\rho_i}{r_0} \right) \widehat{s} \left(\frac{r - r_0}{\rho_i} \right) \]

⇒ Flux-tubes have (high order) rational surfaces
Field-line trajectory in flux coordinates

- Equilibrium flux coordinates:
 - \((x,y)\) are field-line labels
 - \(s\) measures distance along \(B\)

\[
\frac{ds}{B} = \frac{dx}{\vec{B} \cdot \nabla x} = \frac{dy}{\vec{B} \cdot \nabla y}
\]

- Naturally contravariant representation of \(\delta B_\perp\)

\[
\delta \vec{B}_\perp = \nabla \times \delta A_\parallel \hat{b} \approx \nabla \delta A_\parallel \times \hat{b}
\]

- Field-lines trajectories:

\[
\frac{\partial x}{\partial s} = \frac{1}{B} \frac{\partial \delta A_\parallel}{\partial y}, \quad \frac{\partial y}{\partial s} = -\frac{1}{B} \frac{\partial \delta A_\parallel}{\partial x}
\]

Analysis by F. Merz using data from GENE
\[\left\langle \delta A_{||} \right\rangle_\theta \] generates the one-turn field-line mapping

- Integrate field-line trajectory along \(B \) for one poloidal cycle

\[
x_n(\pi) = x_n(-\pi) + \int_{-\pi}^{\pi} \frac{ds}{B} \frac{\partial \delta A_{||}}{\partial y}
\]

\[
y_n(\pi) = y_n(-\pi) - \int_{-\pi}^{\pi} \frac{ds}{B} \frac{\partial \delta A_{||}}{\partial x}
\]

- Flux-tube periodicity:

\[
x_{n+1}(-\pi) = x_n(\pi)
\]

\[
y_{n+1}(-\pi) = y_n(\pi) + 2\pi \hat{s} x_{n+1}
\]

- A one-turn map:

\[
x_{n+1} = x_n + \frac{\partial}{\partial y} \left\langle \delta A_{||} \right\rangle_\theta
\]

\[
y_{n+1} = y_n - \frac{\partial}{\partial x} \left\langle \delta A_{||} \right\rangle_\theta + 2\pi \hat{s} x_{n+1}
\]
ITG turbulence drives magnetic reconnection

- GYRO uses flux coordinates:
 - \((r, \zeta)\) are field line labels
 - \(\theta\) (poloidal angle) measures position along \(B\)

- Project out resonant \(\delta A_{||}\) component by taking 1-turn \(\theta\)-average, \(\langle \delta A_{||} \rangle_{\theta}\)

- Magnetic reconnection occurs when resonant intensity,
 \(\langle \delta A_{||} \rangle_{\theta}^2(k_{\perp 0}, t)\)
 is finite at rational surface

⇒ These simulations exhibit turbulence-driven reconnection

Data from GYRO simulation at \(\beta_e=0.1\%\)
ITG turbulence drives magnetic reconnection

- GYRO uses flux coordinates:
 - \((r, \zeta)\) are field line labels
 - \(\theta\) (poloidal angle) measures position along \(B\)

- Project out resonant \(\delta A_{\parallel}\) component by taking 1-turn \(\theta\)-average, \(\langle \delta A_{\parallel} \rangle_{\theta}\)

- Magnetic reconnection occurs when resonant intensity,
 \[\langle \delta A_{\parallel} \rangle_{\theta}^2(k_{\perp 0}, t)\]
 is finite at rational surface

⇒ These simulations exhibit turbulence-driven reconnection

Data from GYRO simulation at \(\beta_e=0.1\%\)
Mode parity and magnetic surface integrity

- Ballooning modes (like ITG)
 - $\delta \Phi$ is even in s
 - δA_\parallel is odd in s

 $$\Rightarrow \int \frac{ds}{B} \delta A_\parallel = 0$$

 - Ballooning modes don’t cause magnetic reconnection

- Micro-tearing modes
 - δA_\parallel is even in s
 - $\delta \Phi$ is odd in s
 - Micro-tearing modes do cause magnetic reconnection

 $$\Rightarrow \text{No reconnection if micro-tearing modes are stable???}$$

 - Even electrostatic modes have implied magnetic parity!
Mode parity and magnetic surface integrity

- Ballooning modes (like ITG)
 - $\delta \phi$ is even in s
 - δA_\parallel is odd in s

$$\Rightarrow \int \frac{ds}{B} \delta A_\parallel = 0$$

- Ballooning modes don’t cause magnetic reconnection

- Micro-tearing modes
 - δA_\parallel is even in s
 - $\delta \phi$ is odd in s
 - Micro-tearing modes do cause magnetic reconnection

$$\Rightarrow \text{No reconnection if micro-tearing modes are stable??}$$

- Even electrostatic modes have implied magnetic parity!

maybe ITG turbulence will drive magnetic reconnection after all?

from D. Hatch et al., PRL 106, 115003 (2011)
Mode parity and magnetic surface integrity

- Ballooning modes (like ITG)
 - $\delta \phi$ is even in s
 - δA_\parallel is odd in s
 - $\int \frac{ds}{B} \delta A_\parallel = 0$
 - Ballooning modes don’t cause magnetic reconnection

- Micro-tearing modes
 - δA_\parallel is even in s
 - $\delta \phi$ is odd in s
 - Micro-tearing modes do cause magnetic reconnection
 - \Rightarrow No reconnection if micro-tearing modes are stable???

\Rightarrow Even electrostatic modes have implied magnetic parity!

maybe ITG turbulence will drive magnetic reconnection after all?

from D. Hatch et al., PRL 106, 115003 (2011)
Mode parity and magnetic surface integrity

- **Ballooning modes (like ITG)**
 - $\delta \phi$ is even in s
 - $\delta A_\|$ is odd in s
 - $\Rightarrow \int \frac{ds}{B} \delta A_\| = 0$
 - Ballooning modes don’t cause magnetic reconnection

- **Micro-tearing modes**
 - $\delta A_\|$ is even in s
 - $\delta \phi$ is odd in s
 - Micro-tearing modes do cause magnetic reconnection
 - \Rightarrow No reconnection if micro-tearing modes are stable???

- **Even electrostatic modes**
 - have implied magnetic parity!

maybe ITG turbulence will drive magnetic reconnection after all?

FIG. 4: A plot of the amplitudes, time averaged over the nonlinear state, of the 315 (of 8192) least damped eigenmodes (orthogonalized) of the linear gyrokinetic operator for Fourier mode $k_\phi = 0.3, k_x = 0.0$.

from D. Hatch et al, PRL 106, 115003 (2011)
How odd $\varphi(s)$ generates even $A_{||}(s)$

- $j_{||}$ from non-adiabatic electron response

$$\delta f_{e} = \frac{e\varphi}{T_{e}} f_{0} + h_{e}$$

$$\left(\frac{\partial}{\partial t} + v_{||} \frac{\partial}{\partial s} \right) h_{e} = -\frac{e}{T_{e}} f_{0} \frac{\partial \varphi}{\partial t} + \frac{\nabla \varphi \times B}{B^{2}} \cdot \nabla f_{0}$$
How odd $\varphi(s)$ generates even $A_{\parallel}(s)$

- j_{\parallel} from non-adiabatic electron response
 ... but weakly non-adiabatic, $\omega \ll k_{\parallel}v_{te}$

$$\delta f_e = \frac{e\varphi}{T_e} f_0 + h_e$$

$$\left(\frac{\partial}{\partial t} + v_{\parallel} \frac{\partial}{\partial s} \right) h_e = - \frac{e}{T_e} f_0 \frac{\partial \varphi}{\partial t} + \frac{\nabla \varphi \times B}{B^2} \cdot \nabla f_0$$

$$v_{\parallel} h_e = \int ds' \left(- \frac{e}{T_e} f_0 \frac{\partial \varphi}{\partial t} + \frac{\nabla \varphi \times B}{B^2} \cdot \nabla f_0 \right)$$
How odd $\varphi(s)$ generates even $A_{\parallel}(s)$

- j_{\parallel} from non-adiabatic electron response … but weakly non-adiabatic, $\omega \ll k_{\parallel}v_{te}$

- Integrate to get j_{\parallel} and put it into Ampere’s law

\[
\delta f_e = \frac{eq}{T_e} f_0 + h_e
\]

\[
\left(\frac{\partial}{\partial t} + v_{\parallel} \frac{\partial}{\partial s} \right) h_e = -\frac{e}{T_e} f_0 \frac{\partial \varphi}{\partial t} + \frac{\nabla \varphi \times B}{B^2} \cdot \nabla f_0
\]

\[
v_{\parallel} h_{e} = \int ds' \left(-\frac{e}{T_e} f_0 \frac{\partial \varphi}{\partial t} + \frac{\nabla \varphi \times B}{B^2} \cdot \nabla f_0 \right)
\]

\[
\frac{\partial^2 \tilde{A}_{\parallel}}{\partial \tilde{x}^2} - k^2 y \rho_s^2 \tilde{A}_{\parallel} \approx i \frac{\beta_e}{2} \left(\omega - \omega_e \right) \int_s ds \tilde{\varphi}(s)
\]
How odd $\varphi(s)$ generates even $A_{\|}(s)$

- $j_{\|}$ from non-adiabatic electron response … but weakly non-adiabatic, $\omega << k_{\|}v_{te}$

- Integrate to get $j_{\|}$ and put it into Ampere’s law

- And $A_{\|}$ is even … but also small for $\beta_e << 1$

\[\delta f_e = \frac{e\varphi}{T_e} f_0 + h_e \]

\[\left(\frac{\partial}{\partial t} + v_{\parallel} \frac{\partial}{\partial s} \right) h_e = -\frac{e}{T_e} f_0 \frac{\partial \varphi}{\partial t} + \frac{\nabla \varphi \times B}{B^2} \cdot \nabla f_0 \]

\[v_{\parallel} h_e = \int^s ds' \left(-\frac{e}{T_e} f_0 \frac{\partial \varphi}{\partial t} + \frac{\nabla \varphi \times B}{B^2} \cdot \nabla f_0 \right) \]

\[\frac{\partial^2 \tilde{A}_{\|}}{\partial \tilde{x}^2} - k_y^2 \rho_s^2 \tilde{A}_{\|} \approx i \frac{\beta_e}{2} (\omega - \omega_{*e}) \int^s ds \tilde{\varphi}(s) \]
Poincaré surface-of-section and microstructure of B-field

- Integrate magnetic field-line trajectories
 - Many poloidal cycles (3000)
 - Many initial positions (100)
- Poincare surface-of-section formed by putting one • in (x,y)-plane each time a field line crosses the outboard mid-plane (3000 crossing/field line, so •’s merge into lines …).
- Possible outcomes:
Poincaré surface-of-section and microstructure of B-field

- Integrate magnetic field-line trajectories
 - Many poloidal cycles (3000)
 - Many initial positions (100)
- Poincare surface-of-section formed by putting one • in (x,y)-plane each time a field line crosses the outboard mid-plane (3000 crossing/field line, so •’s merge into lines …).
- Possible outcomes:
 - Island formation about rational surfaces
- Integrate magnetic field-line trajectories
 - Many poloidal cycles (3000)
 - Many initial positions (100)
- Poincare surface-of-section formed by putting one • in \((x,y)\)-plane each time a field line crosses the outboard mid-plane (3000 crossing/field line, so •’s merge into lines …).
- Possible outcomes:
 - Island formation about rational surfaces
 - Stochastic regions with isolating surfaces

Surface-of-section plot with isolating surfaces
Poincaré surface-of-section and microstructure of B-field

- Integrate magnetic field-line trajectories
 - Many poloidal cycles (3000)
 - Many initial positions (100)

- Poincare surface-of-section formed by putting one • in (x,y)-plane each time a field line crosses the outboard mid-plane (3000 crossing/field line, so •’s merge into lines ...).

- Possible outcomes:
 - Island formation about rational surfaces
 - Stochastic regions with isolating surfaces
 - Destruction of (almost) all magnetic surfaces
Cyclone base case, Beta=0.2%
Why is micro-field stochastic? Do islands of like order overlap?

- Separation between rational surfaces of given order \((k_y)\):
 \[
 \Delta x(k_y) = \frac{1}{k_y \hat{s}}
 \]

- Island width is given by:
 \[
 w(k_y) = 4 \sqrt{\frac{qR}{\hat{s}B_T}} \left| \langle \delta A_{||}(k_y) \rangle \right|^{1/2}
 \]

- High-order islands overlap if \(S_{\delta A}(k_y) \approx |\delta A_{||}|^2\) falls off slower than \(k_y^{-4}\)

- \(S_{\delta A}(k_y) \sim k_y^{-4}\) for all GYRO simulations in this \(\beta_e\)-scan
Why is micro-field stochastic? Do islands of like order overlap?

- Separation between rational surfaces of given order \((k_y)\):
 \[
 \Delta x(k_y) = \frac{1}{k_y \hat{S}}
 \]

- Island width is given by:
 \[
 w(k_y) = 4 \sqrt{\frac{qR}{\hat{S} B_T}} \left| \left| \delta A_{\parallel}(k_y) \right| \right|_{\theta}^{1/2}
 \]

- High-order islands overlap if \(S_{\delta A}(k_y) \approx |\delta A_{\parallel}|^2\) falls off slower than \(k_y^{-4}\)

- \(S_{\delta A}(k_y) \sim k_y^{-4}\) for all GYRO simulations in this \(\beta_e\)-scan
What about islands of neighboring orders?

- Minimum rational surface separation for neighboring k_y

 $$\Delta x \approx \frac{\Delta k_y}{k_y^2 \hat{s}}$$

 \Rightarrow As k_y increases, island separation falls off faster than width

 \Rightarrow Islands will always overlap at high k_y
Can overlap of neighboring k_y island produce global magnetic stochasticity?

- A single pair of neighboring k_y-modes produces bands of stochasticity separated by isolating surfaces
- Many k_y-pairs can occur, producing stochastic bands at different radii
- Generally, these bands do not overlap (so stochastic almost everywhere)
- Except near low order surfaces
 - WE expect general stochasticity with islands of stability near O-points of low-order islands

GENE data retaining 2 highest k_y-modes

(with thanks to M.J. Püschell)
Can overlap of neighboring k_y island produce global magnetic stochasticity?

- A single pair of neighboring k_y-modes produces bands of stochasticity separated by isolating surfaces
- Many k_y-pairs can occur, producing stochastic bands at different radii
- Generally, these bands do not overlap (so stochastic almost everywhere)
- Except near low order surfaces
 ⇒ WE expect general stochasticity with islands of stability near O-points of low-order islands

which is just what we see!
Is micro-scale magnetic stochasticity ubiquitous?

CON:
- Data shown is from CYCLONE base case
 - Heat transport larger than typical exp’t by 50x
 - $|\varphi^2|$, $|A_\parallel^2|$ also about 50x too large (!)

PRO:
- $<A_\parallel^2(k_y)> \sim k_y^{-4}$ is a consequence of non-linear physics, so this spectral index is (probably) a general result
- The fall-off probably extends out to $k_y \rho_e \sim 1$ (a factor of ~ 100 in k_y at $\beta_e = 10^{-3}$, or 10^8 in $<A_\parallel^2>(k_y)$)
 - More than compensates for 50x. With enough resolution, you will always be stochastic on micro-scale!