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Important collaborators … 

§  From IPP Garching: 
•  Frank Jenko,  
•  M.J. Pueschel,  
•  F. Merz  

§  Formerly U of Wisconsin (and now IPP Garching): 
•  David Hatch 

§  PPPL 
•  Walter Guttenfelder 
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Equilibrium field structure and rational surfaces 

§  q-profile across flux-tube 

§  At rational surface q=m/n 
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⇒  Flux-tubes have (high order) 
rational surfaces 
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Field-line trajectory in flux coordinates 

§  Equilibrium flux coordinates: 
•  (x,y) are field-line labels 
•  s measures distance along B 

§  Naturally contravariant 
representation of 
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§  Field-lines trajectories: 
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generates the one-turn field-line mapping 
§  Integrate field-line trajectory 

along B for one poloidal cycle 

§  Flux-tube periodicity: 

§  A one-turn map: 
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ITG turbulence drives magnetic reconnection   
§  GYRO uses flux coordinates: 

•  (r,ζ) are field line labels  
•  θ (poloidal angle) measures 

position along B 

§  Project out resonant δA|| 
component by taking 1-turn  
θ-average,  

§  Magnetic reconnection occurs 
when resonant intensity, 
 
 
is finite at rational surface   
 

⇒  These simulations exhibit 
turbulence-driven reconnection 
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Data from GYRO simulation at  βe=0.1% 
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ITG turbulence drives magnetic reconnection   
§  GYRO uses flux coordinates: 

•  (r,ζ) are field line labels  
•  θ (poloidal angle) measures 

position along B 

§  Project out resonant δA|| 
component by taking 1-turn  
θ-average,  

§  Magnetic reconnection occurs 
when resonant intensity, 
 
 
is finite at rational surface   
 

⇒  These simulations exhibit 
turbulence-driven reconnection 

! 

"A
|| #

! 

"A
|| #

2
k$0,t( )

Data from GYRO simulation at  βe=0.1% 

as before, but log-scale 
(intensity does not vanish at late times) 
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Mode parity and magnetic surface integrity 
§  Ballooning modes (like ITG) 

•  δϕ is even in s

⇒  δΑ|| is odd in s 

 
 
 

•  Ballooning modes don’t cause 
magnetic reconnection 

§  Micro-tearing modes  
•  δΑ|| is even in s 
•  δϕ is odd in s

•  Micro-tearing modes do cause 

magnetic reconnection 
⇒  No reconnection if micro-tearing 

modes are stable??? 

⇒  Even electrostatic modes 
have implied magnetic parity! 
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Mode parity and magnetic surface integrity 

from D. Hatch et a, PRL 106, 115003 (2011) 

maybe ITG turbulence will drive 
magnetic reconnection after all? 
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Mode parity and magnetic surface integrity 

maybe ITG turbulence will drive 
magnetic reconnection after all? 

ITG 

§  Ballooning modes (like ITG) 
•  δϕ is even in s

⇒  δΑ|| is odd in s 
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from D. Hatch et a, PRL 106, 115003 (2011) 
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Mode parity and magnetic surface integrity 

maybe ITG turbulence will drive 
magnetic reconnection after all? 

ITG 

Damped mode  
w/ tearing parity 

§  Ballooning modes (like ITG) 
•  δϕ is even in s

⇒  δΑ|| is odd in s 

 
 
 

•  Ballooning modes don’t cause 
magnetic reconnection 

§  Micro-tearing modes  
•  δΑ|| is even in s 
•  δϕ is odd in s

•  Micro-tearing modes do cause 

magnetic reconnection 
⇒  No reconnection if micro-tearing 

modes are stable??? 

⇒  Even electrostatic modes 
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from D. Hatch et a, PRL 106, 115003 (2011) 
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How odd φ(s) generates even A||(s) 

§  j|| from non-adiabatic 
electron response 
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How odd φ(s) generates even A||(s) 

§  j|| from non-adiabatic 
electron response 
… but weakly non-
adiabatic, ω << k||vte 
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How odd φ(s) generates even A||(s) 

§  j|| from non-adiabatic 
electron response 
… but weakly non-
adiabatic, ω << k||vte 

 
 
§  Integrate to get j|| and 

put it into Ampere’s law 
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How odd φ(s) generates even A||(s) 

§  j|| from non-adiabatic 
electron response 
… but weakly non-
adiabatic, ω << k||vte 

 
 
§  Integrate to get j|| and 

put it into Ampere’s law 

§  And A|| is even … 
but also small for βe << 1  

! 2 !A
||

! !x2
! ky

2!s
2 !A

||
" i

!e
2
" !"

*e( )
ds

cs

s

# !!(s)

! fe =
e"

Te
f
0
+ he

!!

!t
+ v

||

!!

!s

"

#
$

%

&
'he = (

e

Te
f
0

!"

!t
+
)" *B

B
2

•)f
0

v
||
he = d +s

s

, (
e

Te
f
0

!"

!t
+
)" *B

B
2

•)f
0

"

#
$

%

&
'



16 
Lawrence Livermore National Laboratory 

Poincaré surface-of-section and microstructure of B-field 

§  Integrate magnetic field-line 
trajectories 
•  Many poloidal cycles (3000) 
•  Many initial positions (100) 

§  Poincare surface-of-section 
formed by putting one • in 
(x,y)-plane each time a field 
line crosses the outboard mid-
plane (3000 crossing/field line, 
so •’s merge into lines …).  

§  Possible outcomes: 
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Poincaré surface-of-section and microstructure of B-field 

§  Integrate magnetic field-line 
trajectories 
•  Many poloidal cycles (3000) 
•  Many initial positions (100) 

§  Poincare surface-of-section 
formed by putting one • in 
(x,y)-plane each time a field 
line crosses the outboard mid-
plane (3000 crossing/field line, 
so •’s merge into lines …).  

§  Possible outcomes: 
•  Island formation about  

rational surfaces 

Surface-of-section plot  

showing regular B-field 
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Poincaré surface-of-section and microstructure of B-field 

§  Integrate magnetic field-line 
trajectories 
•  Many poloidal cycles (3000) 
•  Many initial positions (100) 

§  Poincare surface-of-section 
formed by putting one • in 
(x,y)-plane each time a field 
line crosses the outboard mid-
plane (3000 crossing/field line, 
so •’s merge into lines …).  

§  Possible outcomes: 
•  Island formation about  

rational surfaces 
•  Stochastic regions with 

isolating surfaces 

Surface-of-section plot  

with isolating surfaces 
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Poincaré surface-of-section and microstructure of B-field 

§  Integrate magnetic field-line 
trajectories 
•  Many poloidal cycles (3000) 
•  Many initial positions (100) 

§  Poincare surface-of-section 
formed by putting one • in 
(x,y)-plane each time a field 
line crosses the outboard mid-
plane (3000 crossing/field line, 
so •’s merge into lines …).  

§  Possible outcomes: 
•  Island formation about  

rational surfaces 
•  Stochastic regions with 

isolating surfaces 
•  Destruction of (almost)  

all magnetic surfaces 

Destruction of  (almost) 
all magnetic surfaces 
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Cyclone base case, Beta=0.2% 
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Why is micro-field stochastic? Do islands of like order overlap? 

§  Separation between rational 
surfaces of given order (ky): 
 
 
 

§  Island width is given by: 
 
 
 

§  High-order islands overlap if 
SδA(ky)≈|δA|||2 falls off slower 
than ky

-4 
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What about islands of neighboring orders? 

§  Minimum rational 
surface separation for 
neighboring ky 

!x "
!ky

ky
2
ŝ

⇒ As ky increases, 
Island separation falls 
off faster than width 

⇒ Islands will always 
overlap at high ky 
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Can overlap of neighboring ky island  
produce global magnetic stochasticity? 

§  A single pair of neighboring ky-
modes produces bands of 
stochasticity separated by 
isolating surfaces 

§  Many ky-pairs can occur, 
producing stochastic bands at 
different radii 

§  Generally, these bands do not 
overlap (so stochastic almost 
everywhere) 

§  Except near low order surfaces 
⇒  WE expect general stochasticity 

with islands of stability near  
O-points of low-order islands 
 
  

GENE data retaining 2 highest ky-modes 
 (with thanks to M.J. Püschel] 
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Can overlap of neighboring ky island  
produce global magnetic stochasticity? 

§  A single pair of neighboring ky-
modes produces bands of 
stochasticity separated by 
isolating surfaces 

§  Many ky-pairs can occur, 
producing stochastic bands at 
different radii 

§  Generally, these bands do not 
overlap (so stochastic almost 
everywhere) 

§  Except near low order surfaces 
⇒  WE expect general stochasticity 

with islands of stability near  
O-points of low-order islands 
 
which is just what we see! 
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Is micro-scale magnetic stochasticity ubiquitous? 

CON: 
§  Data shown is from CYCLONE base case 

•  Heat transport larger than typical exp’t by 50x 
⇒ |φ2|, |A||

2| also about 50x too large (!) 
PRO: 
§  <A||

2(ky)>~ky
-4 is a consequence of non-linear physics, 

so this spectral index is (probably) a general result 
§  The fall-off probably extends out to kyρe~1 

(a factor of ~100 in ky at βe=10-3, or 108 in <A||
2>(ky)) 

⇒ More than compensates for 50x.  With enough 
resolution, you will always be stochastic on micro-scale! 


