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Equilibrium field structure and rational surfaces

= g-profile across flux-tube

q(r) =q(ry) + q'(r — 1)

z%[1+(2)3(”;f0)]

= At rational surface g=m/n

~1/n ~p*

= Flux-tubes have (high order)
rational surfaces

Rational Surface Locations[r, y] ()
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Field-line trajectory in flux coordinates

= Equilibrium flux coordinates:
* (x,y) are field-line labels
* S measures distance along B

ds dx  dy
B BeVx Be*Vy

= Naturally contravariant
representation of 6B,

8B, =V x 8Ab = VSA, x b

= Field-lines trajectories:
ox 1 oA, dy 1 doA,

d B dy  ds B ox

Poincare section, t=1200.0131
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Analysis by F. Merz using data from GENE
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(04,), generates the one-turn field-line mapping

= Integrate field-line trajectory
along B fOI’ one p0|0|da| CyC|e FieldMGp[}(, A t=1.20E+03] ()

x, (m)=x, (-m)+ f ds 904, 120_ N : ]
B oy : .
T ds JOA, : - :
)= =) 5 8ol b
¥, (1) =y, (=) f s : :

=  Flux-tube periodicity: sof | ]

100+ 4

""""""

xn+1 (_'7-[) = xn (E) 40:_ F g, ]
yn+1(_n) = yn (.7'[) + 2‘7.5‘/5\")(:11+1 ; {I'”"*«.::\_\.
20 L % _

= A one-turn map: : o .
I ......l.........l;..,.'...".u}'h.m“.'.
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ITG turbulence drives magnetic reconnection

= GYRO uses flux coordinates:
e (r,¢) are field line labels

e 0O (poloidal angle) measures
position along B

= Project out resonant 0A,
component by taking 1-turn

6-average, <5A” >6

= Magnetic reconnection occurs
when resonant intensity,

(04, ); (ko.1)

is finite at rational surface

= These simulations exhibit
turbulence-driven reconnection
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Data from GYRO simulation at B,=0.1%
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ITG turbulence drives magnetic reconnection

= GYRO uses flux coordinates:
e (r,¢) are field line labels

e 0O (poloidal angle) measures
position along B

= Project out resonant 0A,
component by taking 1-turn

6-average, <5A” >6

= Magnetic reconnection occurs
when resonant intensity,

(04, ); (ko.1)

is finite at rational surface

= These simulations exhibit
turbulence-driven reconnection

as before, but log-scale
(intensity does not vanish at late times)
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Mode parity and magnetic surface integrity

= Ballooning modes (like ITG)
e O¢gisevenins
= OAjisoddins

:f%éAﬂ=O

e Ballooning modes don'’t cause
magnetic reconnection
= Micro-tearing modes
e OAjisevenins
e O¢isoddins

e Micro-tearing modes do cause
magnetic reconnection

= No reconnection if micro-tearing
modes are stable???

= Even electrostatic modes
have implied magnetic parity!
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e O¢gisevenins
= OAjisoddins

:f%éAﬂ=O

e Ballooning modes don'’t cause
magnetic reconnection
= Micro-tearing modes
e OAjisevenins
e O¢isoddins

e Micro-tearing modes do cause
magnetic reconnection

= No reconnection if micro-tearing
modes are stable???

= Even electrostatic modes
have implied magnetic parity!

maybe ITG turbulence will drive
magnetic reconnection after all?
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How odd ¢(s) generates even A”(s)

[} 1 . em
= j, from non-adiabatic Ofe =7 Joth.
electron response (a_w a_)h __ 0w VoxB o
o0 les) T o BT
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How odd ¢(s) generates even A”(s)

. . . e

= J, from non-adiabatic 5fe=—¢fo +h,
electron response N )h e e VoxB,,
... but weakly non- APy T o g 0

adiabatic, w << kv,

d VoxB
vh fds(——fo Y+ ‘22 .V,
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How odd ¢(s) generates even A”(s)

= J, from non-adiabatic
electron response
.. but weakly non-
adiabatic, w << kv,

" Integrate to get j,, and
put it into Ampere’s law

5fe=@fo+he

aq0 VoxB
+V h——— *V
%{ ”as) Tf i B o

d VoxB
vh fds(——fo(p VX8 ovy

B2

,08A”~z/%(a) .,) Séqb(s)

S

07 A1| k2
IxX°
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How odd ¢(s) generates even A”(s)

= J, from non-adiabatic 5fe=%fo +h,
electron response
d¢p VoxB
.(.j_blét \t/yeakly n(;(n— E{w as)h ——;f (,ff ? * Vi,
adiabatic, w << k,v
, I"te 8(,‘0 VoxB
wh, f ds’ (-— f, = VY,
* |ntegrate to getj|| and FPA ) v ds
put it into Ampere’s law Py kpsz‘\rl?(w ., ) —S‘JO(S)

= And A is even ...
but also small for g, << 1
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Poincaré surface-of-section and microstructure of B-field

= Integrate magnetic field-line
trajectories
e Many poloidal cycles (3000)
e Many initial positions (100)
= Poincare surface-of-section
formed by putting one ¢ in
(x,y)-plane each time a field
line crosses the outboard mid-
plane (3000 crossing/field line,
SO *'s merge into lines ...).

= Possible outcomes:
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= Possible outcomes:

e |[sland formation about
rational surfaces

Surface-of-section plot

showing regular B-field

PoincareFieldmap[r, v] ()
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Poincaré surface-of-section and microstructure of B-field

= Integrate magnetic field-line
trajectories
e Many poloidal cycles (3000)
e Many initial positions (100)
= Poincare surface-of-section
formed by putting one ¢ in
(x,y)-plane each time a field
line crosses the outboard mid-
plane (3000 crossing/field line,
SO *'s merge into lines ...).

= Possible outcomes:

e |[sland formation about
rational surfaces

e Stochastic regions with
isolating surfaces

Surface-of-section plot

with isolating surfaces

PoincareFieldmapl[r, y] ()
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Poincaré surface-of-section and microstructure of B-field

= Integrate magnetic field-line
trajectories
e Many poloidal cycles (3000)
e Many initial positions (100)
= Poincare surface-of-section
formed by putting one ¢ in
(x,y)-plane each time a field
line crosses the outboard mid-
plane (3000 crossing/field line,
SO *'s merge into lines ...).

= Possible outcomes:

e |[sland formation about
rational surfaces

e Stochastic regions with
isolating surfaces

e Destruction of (almost)
all magnetic surfaces

Destruction of (almost)
all magnetic surfaces

PoincareFieldmaplr,
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Cyclone base case, Beta=0.2%
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Why is micro-field stochastic? Do islands of like order overlap?

Separation between rational
surfaces of given order (k):

1

kys

z:kr<K'A‘II)thetolz)t[kd].]
1005 — T T T T

Ax(k,) =

= |sland width is given by:

R
w(k ) = 4 \EBT (04,(k,)),

= High-order islands overlap if
Ssa(k,)=|0A, |? falls off slower
than k,*

- SéA(ky) ~ k" for all GYRO
simulations in this B,-scan  cvro 8.

candy@fusion.gat.com
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=  Separation between rational
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1

kys

z:kr< KAII >theto |2 >t[ I'<dJ.]

100

Ax(k,) =

= |sland width is given by:

R
w(k ) = 4 \EBT (04,(k,)),

= High-order islands overlap if

Ssa(k,)=|0A, |? falls off slower

than ky"’
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What about islands of neighboring orders?

Islond width vs rotionol surfoce seporation(k p,] (;

= Minimum rational o
surface separation for | || 1kseparation
neighboring &, ST (1/kr2 separation

Ak |
Ax ~—— Ji
k.S |
=As k, increases, 4T 1% width
Island separation falls | 7% width
off faster than width !
oLy ooy T ——

=|slands will always 00 0.2 04 06 0.8 1.0
overlap at high k, kps
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Can overlap of neighboring k, island

Eroduce global magnetic stochasticitx?

GENE data retaining 2 highest & -modes
(with thanks to M.). Piischell

= A single pair of neighboring k,- incare section, t=927.87747

modes produces bands of j :‘5
stochasticity separated by I IRl
isolating surfaces ﬁ iy ¢§
= Many k,-pairs can occur, diHy | g‘ i ;% q
producing stochastic bands at ik 14 bl
different radii m ' ‘j ;; {
= Generally, these bands do not < 1 gk
overlap (so stochastic almost ” | f l g
everywhere) ¥ |!'l
= Except near low order surfaces 1 lfr
= WE expect general stochasticity :éj :
with islands of stability near Ik
O-points of low-order islands | :f i
W AUNTEEE ¢ B ESE
-20 0 20 40

Lawrence Livermore National Laboratory UL-

2%



Can overlap of neighboring k, island

Eroduce global magnetic stochasticitz?

= A single pair of neighboring k-
modes produces bands of
stochasticity separated by
isolating surfaces

= Many k -pairs can occur,
producing stochastic bands at
different radii

= Generally, these bands do not
overlap (so stochastic almost
everywhere)

= Except near low order surfaces

= WE expect general stochasticity
with islands of stability near
O-points of low-order islands

a 10 20 30 40 50

which is just what we see! o F
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Is micro-scale magnetic stochasticity ubiquitous?

CON:
= Data shown is from CYCLONE base case
e Heat transport larger than typical exp’t by 50x
=94, |A?| also about 50x too large (!)
PRO:
= <A4(k,)>~k, *is a consequence of non-linear physics,
so this spectral index is (probably) a general result

= The fall-off probably extends out to k,0,~7
(a factor of ~700 in k, at B,=1073, or 10%in <A ?>(k )

= More than compensates for 50x. With enough
resolution, you will always be stochastic on micro-scale!
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