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® JJe reconsider the classic problems of calculating “* net turbulent
heating " and the inter-species transfer of energy in ariff wave
urbulence

® Motivation: Transfer vs Transport === " Roles " in energy budget
® Consider
Net volumetric heating === Does turbulence heat a given volume of plasma?
- Physics of Electron = 1on collisonless energy transfer channels

-

——

® (alculate and Estimate Energy Transfer Channels

J— Electron cooling : quasilinear
' Ton heating : quasilinear, nonlinear, Ion Pol & Dia === Zonal flow

-

® Implication for ITER

J— Turbulent vs collisional transfer
| Turbulent transport vs Turbulent transfer

-

® Results and Discussion



Motivation

e Transfer vs Transport
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— (J heat flux, energy loss by turbulent transport

_>< Z. ]> electron-ion collisionless energy transfer

Collisional transfer

— ITER: low collisionality, electron heated plasma
* Issues With< £ ]> — Z< £ ;/a >

* [s the net heating zero?( Manheimer 77)
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* Periodical boundary condition ,no boundary term exist
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But ja’r<E-J>=—g5Jr I+ | de~T9p) #0 Boundary effects in a
k_YJ finite annular region
Surface term survives! ===»Net heating



* Another perspective. Poynting theorm
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* We need reconsider both the turbulent heating and
energy transfer chanels in an annular region’/



 Collisionless, inter-species energy transfer
— Where does the net energy transfer go?

— How 1s energy transferred form electrons to 1ons
(turbulent transfer channels)?

— How reconcile with saturation mechanisms?
— Role of ZF 1n heating?

— ZF is important to saturation, so must enter
energy transfer as well!?

> Zonal flow frictional damping is another energy trasfer
channel

»> Nonlinear damping ( considered in future) is another
possibility



Turbulent Energy flow Channels
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® Necessary Correspondence: Nonlinear Saturation and Energy
Transfer

» Nonlinear saturation in turbulent state implies energy transfer
from source(vz,v») to sink

» Schematically, saturation implies some balance condition must

be satisfied
l.e. O = 7/ — yZZ'ﬂed/” + y[lhed/’ + yZO”a/ + yNZLD + Tt
electron ion Flow
>0 <0 <0 <0

» Channels for electron==ion energy transfer must be consistent
with saturation balance

In particular:

* If zonal flows control saturation, they must contribute to energy transfer

* As zonal flows are nonlinearly generated (Reynolds stress), we should
consider other nonlinear heating channels, as well,for completeness



Quasilinear Turbulent Heating in Drift Wave

~ ~ \(2), -
® Calculate <E”JH> in quasilinear theory
> DKE for electron
» Take non-adiabatic electron distribution function
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® Similarly, calculate <Z?|~7||f>(2) for ion
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Perpendicular Current Induced Turbulent Heating
* The turbulent heating induced by 10n polarization current
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— Defining a annular region 2 o+ ) J
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® Net turbulent heating 0 I
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Surface term * Reynolds work on mean flow in annular

BN

+ At steady state * Directly linked to zonal flow drive
A Zonal flow frictional damping is the
< .S 0)> J él’/Uw/ f > >0, fate of net electron-ion energy trasfer

. Dlamagnetlc current induced turbulent heating
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Nonlinear Turbulent Heating
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* ZF coupling to o[ ] , so need calculate parallel heating too[

* Nonlinear turbulent heating — perturbation theory (Dupree 68)
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* The nonlinear turbulent heating for 1ons
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Overview of Results
Estimation of the turbulent heating

Turbulent analytical Mixing length approximation
heating for fluctuation levels
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Basic comparision of channels

ITER Parameters R=6.2m,

K Ratios of energy dissiaption channels
a=2m,q=2 at differernt collisionality

i p,~1 "l Zonal flow friciton
¥ Nonlinear LD
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Zonal flow frictional damping can be a significant dissipation channel
* "Collisionless drift wave" @ s>, > ()



Implication Bottom Line

* Electon turbulent energy transport
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collisional collisionless Comparsion of the collisonal and collisionless

energy transfer.

——Collisionless can be dominant at low collisionaltiy

\/ \/ Comparsion of energy transfer in collisonless

and energy transport by heat flux Q

ion
—— Can be of the same order




Collisionality

« Collisonality y, inITER
— dimensionless g‘”kqve
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* Collisionality at crossover of collisional and collisionless
coupling
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— Quasilinear trapped electron cooling in CTEM
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* The collisonless turbulent energy transter then dominates
inter-species coupling process



Transfer vs Transport
* The|transfer and/transport energy loss in CTEM

— Compare the volume integral of the electron cooling to
the surface integrated of the electron heat flux
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Result and Discussion
* Net heating
— Quasilinear turbulent energy transfer in drift wave
* electron cooling and ion heating

— Nonlinear 10n heating by beat wave resonance
— Energy flux differential gives rise to the net heaingems) 70nal flow

* Energy transfer channels

— Identify a important energy transfer channels
— Zonal flow frictional damping can be comparable to LD
damping
* For low collisionity ITER plasma, collisionless enenrgy
transfer can be a critical element of transport model
analysis
— Collisionless enenrgy transfer has same order as transport



