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Strong density fluctuations observed during on-axis

heating of C-Mod ITB
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GS2 Synthetic PCI diagnostic

» Could make multiple copies of flux tube, rotated toroidally, to cover flux surface

» Equivalent approach: integrate density fluctuations along flux tube, over range of
angles subtended by PCI laser

32 Vertical PCI
p = 0.4 surface Laser Chords

> Result: radial and
poloidal spectra are

mixed, yielding

apparent downshift in Non-orthogonal

measured k, B=VaxVy

spectrum. oa=_C—q(y)d

v labels flux surface
] ] o labels field line
» Mainly geometric 6 measures distance

effect along field line
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D. R. Ernst et al., IAEA (2006).
GS2 Flux Tube
(63 p; x 77 p))

» Transform kp = (VR . V'g[/|v1,/)|)k1/ + (VR . VQ{/|VO¢|)1{

P> Instrument function: Gaussian beam, finite aperture, reference beam kg~0
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Simulations reproduce measured wavelength spectrum

of TEM density fluctuations in the |ITB

» GS2 with synthetic PCI diagnostic

D. R. Ernst et al., IAEA (2006).
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> Shape of measured wavenumber Phase Contrast Imaging

spectrum in close agreement § —— 1.22 +/-0.03s
. 3¢
» Wavelength of peak in close agreement :
o _ . : Gyrokinetic
> Synthetic diagnostic produced downshift - Simulation (TEM)
from 4 cm to 3 cm-' p=0.35,1.22s
1F

> Largely due to geometric effects: PCI
measures kg spectrum (wrs to major

radius)
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> |TB in effect localizes chord-integrated Wavenumber kg [com’]

fluctuation measurement 54
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» PCIl amplitude not absolutely calibrated — 2
in these prior 2004 experiments A1
3 1] D
=
L

Wavenumber [cm™ ]

» PCl is line-integrated: Do changes in the
edge fluctuations matter?

[Alcator
D. R. Ernst, EU-US TTF (2011) San Diego ‘)C('M"d PS[ ( 4



Our latest C-Mod ITB experiments utilized modulated

ICRH to separate core and edge fluctuations

PCIWavenumber Spectrum 15-500 kHz|

> On-axis ICRH modulated 50ms on shot — 1100324019, f[kHz] — [ 149 499.9]

50ms off
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> Again, strong bursts of density
fluctuations accompany heating
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On-axis pulses produce strong, localized perturbations
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Profile fitting upgraded to include

Monte Carlo error analysis

— E Edge Thomson Data
© 5 ¥ Core Thomson Data
£ B-Spline + tanh Fit
8o 4 F
> Profile fitting tools combine available =
profile data from multiple diagnostics ;;* 3t
into a fitted density and temperature S
- O 2F
profiles s | Monte Carlo
= % | error analysis B
N - 8 1Elz | for profile fit
> Significant recent upgrades to fitting L 0 - |2
software — ' ' :
2.0F
[ GPC ECE
. ) y GPC2 ECE
» Monte Carlo error analysis of profiles 15l FRC ECE
5 5 Edge Thomson

and their gradients

Core Thomson

B-spline + tanh Fit

» Trials can be saved for MC code runs
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Are the strong PCI density fluctuations

from the edge or the core?

» PCIl in phase with core temperature

> 88 GHz reflectometer: n,~ 0.4 n_pred

> Edge density fluctuations actually
diminish during the on-axis heating

» Mirnov spectrum shows magnetic
fluctuations associated with edge
Quasi-Coherent mode diminish during
heating pulses
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Edge reflectometry in pedestal shows integrated

edge density fluctuations also diminish during on-axis
heating pulses

reflectometer Fluctuotions for Shot 1100324019
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Mirnov frequency spectra show QC mode disappears

during on-axis heating; new feature appears on PCI

Phafnﬁa‘;?nnéfaﬁ > During on-axis heating, PCI shows
strong spectral feature (core or

N 1.49 s, durin
a6 . ) g
h@m on-axis ICRH edge'))
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S g 1.45 s, before
sy on-axis ICRH

» Simultaneously, magnetic fluctuations
Mirmov Coils associated with the edge Quasi-
sounEoArdmidplans) Coherent mode disappear

1.45 s, before
on-axis ICRH
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Magnetic Fluctuation Amplitude
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o » Reflectometry shows the edge QC
1.45 , before mode magnetic fluctuations are not
o replaced by electrostatic fluctuations
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88 GHz Microwave > PCIl appears to reflect increased core
Roliccimeter . density fluctuations
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Very recent experiments with more

Core +
Edge

Edge

Edge

complete diagnostic set show
similar behavior

2
15—
>
£ 11
0.5 T, (X-ray Crystal)
) T., (TS/ECE fits)
0 T T T 1 | T 1T T 1T ‘ T T T | (L ‘ T T 17T
1.8 ‘ ' '
% 16 T., (ECE)
2 14
1.2
1.0

—
o

1.1 12 13 1.4
time[s]

Edge fluctuations diminish during

on-axis heating pulses
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Gas Puff Imaging Spectra in SOL and Pedestal

» Detailed wavelength and frequency spectra in 8 columns: r ~ -1.6 cm to +1.5 cm

wrs to LCFS
» Mainly density fluctuations
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Shows density fluctuations in SOL diminish during on-axis heating

Possible small increase in QC mode amplitude

[Alcator
D. R. Emst, EU-US TTF (2011) San Diego ‘)C('M“’ PS[ ( 12



TEM expected in ITB during on-axis heating

> Density gradient should be strongly
TEM unstable based on previous
cases

B | Tlimtla (ls):‘1.‘21(l) i
> Monte Carlo error analysis of the 3F
profile fits yields a range of a/L,. -

20 H

. - . c T ]
> On-axis heating INCreases _ I /A TEM Linear Threshold |1
temperature, destabilizing TEM in - ]

presence of steep density gradient

> Detailed analysis in progress.
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> We have used modulated on-axis heating to perturb local profiles in an
ITB, with the aim of modulating TEM turbulence.

> The heating pulses drive strong bursts of density fluctuations.

> These experiments appear to have successfully ruled out edge
fluctuations in the line-integrated PCI signal

> Kinetic profiles are very well-documented, providing an ideal validation
test-bed for comparison of gyrokinetic simulations with fluctuation
measurements.

> Preliminary linear gyrokinetic results appear to support the role of TEM
turbulence.

> Further analysis with synthetic diagnostics is planned.
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