Experiments on Tore Supra
3D particle transport @ LCFS
&
effects on core rotation

Nicolas Fedorczak

nfedorczak@ucsd.edu

J.P. Gunn, Ph. Ghendrih
P. Hennequin, J. Bernardo
P. Manz, G. Tynan
Turbulence asymmetry plays a major role in SOL

I. LOCAL turbulent transport DOES NOT represent SOL width: BALLOONING

Moderate turbulent transport

Strong turbulent transport

NO turbulent transport

→ drive strong // flows along field lines

II. Ballooning + symmetry breaking (divertor/limiter)

→ Influence on core particle momentum (C-mod, LaBombard
 TCV, Camenen)

Toroidal & transversal rotation
Resolving the particle flux asymmetry in TS SOL

Field line tailoring with movable discrete limiter
(intersection @ LFS midplane)

<table>
<thead>
<tr>
<th></th>
<th>(L_{//})</th>
<th>(\lambda_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>" free" SOL</td>
<td>85 m</td>
<td>4.2 cm</td>
</tr>
<tr>
<td>" tailored " SOL</td>
<td>65 m</td>
<td>1.5 cm</td>
</tr>
</tbody>
</table>

\[\lambda_n \times L_{//} \quad (\rightarrow \text{non uniformity}) \]

Flux conservation in SOL:

\[n(r), M_{//}(r) \rightarrow \int \Gamma_r dl_{//} \]

Second limiter @ LFS midplane: \(\frac{1}{2} \) of line integrated radial flux is isolated

\[\Gamma_r \text{ is centered @ LFS midplane} \]
Resolving the particle flux asymmetry in TS SOL

Scan of the poloidal extent of the private region

\[\Gamma_r \text{ centered @ outboard midplane in a narrow poloidal section (±50°)} \]
Local ExB transport is consistent with ballooning

Mach probe $\rightarrow \Gamma_r(\theta)$ test distribution (Gaussian)
Poloidal rake probe \rightarrow fluctuations induced radial flux: interchange-like

The flux ballooning is due to an asymmetry of the turbulence: $k_{//} > 0$
Modes destabilized @ LFS midplane \rightarrow influence of magnetic shear along field lines
Ballooning : magnetic shear tilts the structures

In the plasma frame ($\langle E_r \rangle_t$ corrected) :
- assume filament velocity purely radial @ LFS midplane
- assume flux tube aligned structures
→ local velocity is constrained by magnetic shear
→ Reynolds Stress. Surface average depends on plasma symmetry
Symmetry breaking fixes $// \& \perp$ Reynolds stress sign

LCFS & time averaged Reynolds stress:

$\langle n v_r v_{//} \rangle \& \langle n v_r v_{\perp} \rangle$

$\langle n v_r v_{\perp} \rangle$: magnetic shear

$\langle n v_r v_{//} \rangle$: inward flux of SOL momentum

$B \times \nabla B \downarrow$

<table>
<thead>
<tr>
<th>LSN</th>
<th>USN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle n v_r v_{\perp} \rangle < 0$</td>
<td>$\langle n v_r v_{\perp} \rangle > 0$</td>
</tr>
<tr>
<td>$\langle n v_r v_{//} \rangle < 0$</td>
<td>$\langle n v_r v_{//} \rangle > 0$</td>
</tr>
</tbody>
</table>

Edge: $\rho \leq 1$

$V_{//}^{LSN} > V_{//}^{USN}$ $V_{\perp}^{LSN} > V_{\perp}^{USN}$

Nicolas Fedorczak - Edge Physics - TTF 2011 April 8th 2011
Symmetry breaking effect confirmed on Tore Supra

Experiments on TS confirm the behavior:

\[V_{LSN}^{\parallel} > V_{USN}^{\parallel} \]
\[V_{LSN}^{\perp} > V_{USN}^{\perp} \]

Edge : \(\rho \leq 1 \)

Doppler back-scattering

\[V_{\perp} \]

\[V_{\phi} \]

CER
Nicolas Fedorczak - Edge Physics - TTF 2011 April 8th 2011
Conclusion and prospects

Probable influence of SOL transport on core rotation:

- Revealed by experiments
- In agreement with simple ballooning-symmetry breaking principles
 - // velocity by inward “viscous” transfer from SOL
 - ⊥ velocity by magnetic shear induced Reynolds stress

Can 3D simulations capture the phenomena?

What are the optimum plasma shapes to enforce shear layers?