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1)  SOLT recovers the observed 1)  SOLT recovers the observed heatheat--flux width scalingflux width scaling of of 
EDA HEDA H--modes at Cmodes at C--ModMod

2)  SOLT2)  SOLT’’s quasis quasi--coherent mode (QCM)coherent mode (QCM)
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1.409 sec
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• C-Mod profiles (ne , Te) for EDA H-mode shot #1100303018 at two time slices : 

• SOLT profiles are damped to these 
for r < 0, otherwise they evolve by 
(self-consistent) SOLT dynamics.
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 In the SOL (r > 0), the flow evolves by momentum conservation and sheath physics.
 On the core-side (r < 0), the flow is damped to a reference,        , derived from the C-Mod profiles.

Input to SOLT from ExperimentInput to SOLT from Experiment

 controls the turbulence
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q//,e: exponential fit; q//,L: Loarte length

: location of the peak in the density fluctuation spectrum at 
r = 0.46 mm.

Change  the amplitude of         , in SOLT to scan PSOL and q// (v//neTe).y0v

--Scan Results from SOLTScan Results from SOLT
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SOL width (e) decreases with increasing power (and Tsep)
in both experiment and simulation.

For the best PSOL match at each time-slice :

--Scan Results from SOLT (cont.)Scan Results from SOLT (cont.)
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Parallel Heat Flux is Parallel Heat Flux is 
Limited by Collisions Limited by Collisions 

in the nearin the near--SOLSOL
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SOLTSOLT’’s QCMs QCM

The saturated turbulent state 
consists of a string of blobs, 
radially-localized about a 
maximum of the mean flow 
(MF) just inside the SEP, 
intermittently spilling 
plasma into the SOL where 
the flow reverses.
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The local Doppler frequency corresponds to the QCM dispersion line (bright beads) 
only in the birth zone, where the time-averaged MF is maximized (flow shear = 0).  

QCM
MF

QCM dispersion is established in the birth zone. QCM dispersion is established in the birth zone. 
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Particle Flux from the QCMParticle Flux from the QCM
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no net flux, circulating
yes : net particle flux
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• sheath mode
• blob graveyard

• drift-interchange mode
• blob birth zone

• straddles (±) MF regions
• blob emission

QCM

K-HC
QCM

K-H

C

K-H CQCM

MF

Linear Analysis of TimeLinear Analysis of Time--Averaged ProfilesAveraged Profiles
suggestive of underlying transport dynamics

frequency growth rate

radial eigenfunctions, |r| :

MF MF
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Moving the DW region further into the core allows vorticity cascMoving the DW region further into the core allows vorticity cascade to smaller kade to smaller ky.y.

 This is consistent with the sharp change in the sign of the crosscross--phasephase (n,) near the inflection 
point in the dw profile.
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dw :  Drift Wave
Adiabaticity Parameter
• ~ k//

2 / ei
• f (B field topology)

Why is the peak 
at ky ~ 1 cm-1 ?



Part 1Part 1
Scaling of the SOL width for parallel heat flowScaling of the SOL width for parallel heat flow

•Matching PSOL with SOLT simulations, by adjusting the mean flow () 
 q// - width scaling with Te  :

•q// is limited by collisions in the near-SOL: q//, CL ~ Te
7/2

 consistent with Te – dependence observed for this shot
 differs from a similar study of NSTX scaling in the sheath-limited regime
 (note: sheath-limited heat flux dominates in the far-SOL)

Part 2Part 2
QuasiQuasi--Coherent ModeCoherent Mode

•A string of quasi-stationary blobs, moving with the mean flow in the edge

 centered in the birth zone, where the mean flow shear rate = 0
 energy spectrum consistent with experiment, ky ~ 1 cm-1

 accounts for 44% of the net particle flux, consistent with sustaining the EDA H-mode
 linear unstable modes (drift-interchange, K-H) drive transport in the saturated state
 drift-wave transition region is a barrier to vorticity cascade  peaks at ky > 0
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The phase relation between  and n 
changes abruptly at the entrance to the DW region.

sin() < 0 : conducive to the blob/hole generation and propagation paradigm
sin() > 0 : suppresses blob formation 

Cross-Phase
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