

Max-Planck-Institut für Plasmaphysik



# L-H transition at low density in ASDEX Upgrade

P. Sauter, F. Ryter, T. Pütterich, E. Viezzer, E. Wolfrum,

D. Coster, R. Fischer and ASDEX Upgrade Team

Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching, Germany

Motivation

- Experimental approach
- Results

### **Motivation**

- Aim: investigate respective role of electron and ion channels in L-H transition mechanism
- Requires decoupling:
  - Iow density
  - dominant electron heating (or ion heating)
- Corresponds to low density branch of L-H threshold



[F. Ryter NF 2009]



### **Motivation**

- Aim: investigate respective role of electron and ion channels in L-H transition mechanism
- Requires decoupling:
  - Iow density
  - dominant electron heating (or ion heating)
- Corresponds to low density branch of L-H threshold





### **Motivation**

- Aim: investigate respective role of electron and ion channels in L-H transition mechanism
- Requires decoupling:
  - Iow density
  - dominant electron heating (or ion heating)
- Corresponds to low density branch of L-H threshold





### **Experimental approach**



- Electron heating: ECRH up to 3 MW
- L-H transition reached by:
  - P<sub>ECRH</sub> steps at fixed density
  - Density steps at fixed PECRH
- Edge measurements:
  - ${\mbox{ \ \ e}}$  T  $_{\rm e}$  from ECE and TS
  - T<sub>i</sub> and rotation from CXRS with NBI blips (10ms), boron line
    - edge toroidal and poloidal systems (1.8 ms)
    - core (4 ms)
  - n<sub>e</sub>: Li beam, TS, interferometer

### Two examples: high T<sub>e</sub>/T<sub>i</sub> at low density



**I**PP

## **Operation diagram: explored n<sub>e</sub> and P<sub>heat</sub> ranges**

- Range of explored density varies by factor of ≈ 6
- Low density: large variation of P<sub>heat</sub> because P<sub>thres</sub> high
- Higher density: limited PECRH range because P<sub>thres</sub> lower



IPP

 I-Phases (dithering) somewhat below P<sub>thres</sub> (see also G. Conway this workshop and PRL 2011)

### Edge profiles at different times



Profiles have been analyzed in:

- L-Mode low and high power
- I-Phase
- H-Mode



### Edge profiles in L-Mode low and high PECH

Ibb

Strong increase of edge  $T_e$  with  $P_{ECRH}$  : clear  $T_e$  pedestal in L-Mode  $T_i$  weakly affected



#### I-Phase and H-mode: T<sub>i</sub> pedestal forms



Constant  $P_{ECRH} \approx 3 \text{ MW}$  :  $T_e$  pedestal almost unchanged

#### $T_i$ pedestal develops: steeper edge $\nabla T_i$





 $T_{\rm e}$  pedestal unchanged within experimental uncertainties  $T_{\rm i}$  pedestal develops from L to H-Mode



#### Pedestal data: temperatures versus density

- T<sub>e,ped</sub> at L-H transition increases towards low density: factor of 3
- T<sub>e,ped</sub> in H-mode only somewhat higher than at L-H

- T<sub>i,ped</sub> at L-H transition increases only by ≈1.6 towards low density
- T<sub>i,ped</sub> in H-mode clearly higher than at L-H





#### Pedestal T<sub>e</sub> and T<sub>i</sub> can be decoupled







## Edge T<sub>e</sub> T<sub>i</sub> decoupling



\_–mode I-Phase

LH-transition H-mode

6

5



- Edge electron pressure at L-H:
  - 30 % variation at most
  - no clear trend
  - increase toward high density?
- Edge ion pressure at LH:
  - linear increase with edge density
     => factor of 4 variation

 $p_{e,ped} \approx p_{i,ped}$  at L-H at high density

Both  $p_{e,ped}$  and  $p_{i,ped}$  higher in H-Mode



#### Edge pressure profiles at low and high density

#### Low density at L-H $p_e > p_i$ and $\nabla p_e > \nabla p_i$

#### High density at L-H $p_e \approx p_i$ and $\nabla p_e \ge \nabla p_i$

Ibb



### $\nabla p_{e,ped}$ and $\nabla p_{i,ped}$ at L-H versus density



 $\nabla p_{e,ped}$  and  $\nabla p_{i,ped}$  at L-H taken at their maximum converge with increasing density, as expected Diamagnetic contribution to  $E_r$ from  $\nabla p_i/n$  at L-H transition in same range as yielded by Doppler reflectometry in similar discharges (see G. Conway)



## Analysis of L-mode $T_e$ pedestal with SOLPS

#### Why using SOLPS ?

- Transport calculated in edge and SOL
- Profiles for radial transport (χ<sub>e</sub>) adjusted to match experiment
- Transport along field lines in SOL calculated
  - determines T<sub>e</sub> at separatrix
  - no explicit boundary conditions on T<sub>e</sub>
- Density and T<sub>i</sub> also calculated

Edge  $\nabla$ Te in L-Mode requires transport barrier in  $\chi_e$ 

Can only be clear at low density and if  $P_{thres}$  high



-0.1

-0.05

Δ s [m]

0

0.05



#### Edge transport barrier in H and L modes



+ Experiment SOLPS L-mode



2000



## Summary



- Dependence of edge parameters investigated in low density with dominant electron heating in L-mode up to L-H and in H-mode
- Strong decoupling of  $T_e$  and  $T_i$  achieved at L-H: edge  $T_e/T_i$  up to 3
- T<sub>e</sub> in L-mode exhibits clear pedestal at low density and high P<sub>ECRH</sub> edge transport barrier
- T<sub>i</sub> pedestal develops clearly in I-Phase and H-Modes
- Overview of parameters variations at L-H transition in density scan:

|                    | Τ <sub>e</sub> | T <sub>i</sub> | p <sub>e</sub> | p <sub>i</sub> | $ abla p_e$ | ∇p <sub>i</sub> | ∇p <sub>i</sub> /n |
|--------------------|----------------|----------------|----------------|----------------|-------------|-----------------|--------------------|
|                    | x3             | x1.5           | 30%            | x4             | x2          | x2(±1)          | x2(±1)             |
| for n <sub>e</sub> |                |                | ▼              | ↗              |             | ~               |                    |