TTF 2011 Joint EU - US Transport Task Force Workshop San Diego, California, April 6-9

Modeling of Long-Range Frequency Sweeping Phenomena

R. Nyqvist ¹), B.N. Breizman ²), M.K. Lilley ¹), S.E. Sharapov ³)

- ¹⁾ Department of Earth and Space Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden
- ²⁾ Institute for Fusion Studies, The University of Texas, Austin, Texas, 78712 USA
- ³⁾ Euratom/CCFE Fusion Association, Culham Science Center, Abingdon, Oxfordshire OX14 3DB, UK

Outline

- Background frequency sweeping events (reminder)
- Bump-on-tail model (reminder)
- Adiabatic numerical model (ABBOT) for long-range sweeping
- Particle trapping into growing separatrix
- **Effect of separatrix filling**
- **Summary**

Rapid Frequency Sweeping Events

Collisionless Sweeping Simulation

Drag+Diffusion Give Hooked Frequency Pattern

 $(1 - \gamma_d) = 1.30$, $\alpha/(\gamma_L - \gamma_d) = 1.50$, $\gamma_d/\gamma_L = 0.900$, 10 Harm, 10.0 box, $dt < \gamma_L = 0.020$, 1001 s points,

Time: 0.1562 to 0.1721 npt: 524288, nstp: 128 nfft: 1024 f1: 73.80 f2: 139.6 genetic v314 (epind) - time: emine: The Jun 22 112558 2008

Page 5 M.K. Lilley, B.N. Breizman, S.E. Sharapov, Phys. Plasmas 17, 092305 (2010).

Bump-on-Tail Model For Sweeping Onset

$$\frac{\partial F}{\partial t} + u \frac{\partial F}{\partial \zeta} + \frac{ek}{2m} \Big[\hat{E}(t) e^{i\zeta} + \text{c.c.} \Big] \frac{\partial F}{\partial u}$$
$$= \Big[v^3 \frac{\partial^2}{\partial u^2} + \alpha^2 \frac{\partial}{\partial u} - \beta \Big] \Big(F - F_0 \Big)$$

$$\frac{\partial \hat{E}}{\partial t} = -4\frac{\omega}{k^2}\pi e \int f_1 du - \gamma_d \hat{E} \qquad u \equiv kv - \omega \\ \zeta \equiv kx - \omega t$$

$$F = F_0 + f_0 + \sum_{n=1}^{\infty} \left[f_n \exp(in\zeta) + c.c. \right]$$
$$E = \frac{1}{2} \left[\hat{E}(t) e^{i\zeta} + c.c. \right]$$

Time Scales and Mode Evolution Phases

- $\gamma_{\scriptscriptstyle L}\,$ linear growth rate due to $\,$ resonant particles $\,$
- γ_d background damping rate due to bulk plasma
- ω_{b} trapped particle bounce frequency
- 1. Linear near-threshold instability (excitation of a plasma eigenmode)

 $\tau_1 \sim 1/(\gamma_L - \gamma_d) << 1/\omega_b$

2. Explosive nonlinear growth of the mode Formation of phase-space holes and clumps with trapped particles Initiation of frequency sweeping

$$\tau_2 \sim 1 \, / \, \gamma_L \sim 1 \, / \, \omega_b$$

3. Slow (adiabatic) evolution of phase-space holes and clumps Significant frequency sweeping Transition from the bulk plasma eigenmode to a beam mode $\tau_3 >> 1/\gamma_L \sim 1/\omega_b$

How to Treat Long-range Frequency Sweeping

Observation:

Experiments exhibit signals with large (order of unity) frequency sweeping.

Issue:

How can a small group of particles produce a large change in the mode frequency?

Physics mechanism:

Initial instability leads creates a modulated beam of resonant particles (BGK-type structure).

As the beam particles slow down significantly, they can produce a signal that deviates considerably from the initial mode frequency.

Slowly Varying Periodic Electrostatic Wave

Wave electrostatic potential (with a spatial period λ):

 $\varphi[z-s(t);t]$

Lab-frame Hamiltonian: $H(p;z;t) = \frac{p^2}{2m} - |e|\varphi[z-s(t);t]$

- Wave-frame Hamiltonian: $H(p;x;t) = \frac{(p-m\dot{s})^2}{2m} - |e|\varphi(x;t) \qquad x = z - s(t)$
- Adiabatic invariants

Downward Drift of Phase Space Clump

Passing particles:
$$J_{\pm} = \int_{0}^{\lambda} \left\{ m\dot{s} \pm \sqrt{2m\left[H + |e|\phi(x;t)\right]} \right\} dx$$

Trapped particles: $J_{trapped} = \oint \sqrt{2m\left[H + |e|\phi(x;t)\right]} dx$

Wave Structure

Electron potential energy U has a given spatial period λ , a slowly varying shape, and a slowly varying phase velocity \dot{s} :

 $U[z-s(t);t] \equiv -|e|\varphi$

Perturbed density of plasma electrons: $\delta n = n_0 U / m\dot{s}^2$

Perturbed density of energetic electrons:

$$\delta n_{fast} = \sqrt{\frac{2}{m}} \int_{trapped} \frac{F(J) - F_0(\dot{s})}{\sqrt{H - U(x;t)}} \frac{dH}{dJ} dJ - \left\langle \sqrt{\frac{2}{m}} \int_{trapped} \frac{F(J) - F_0(\dot{s})}{\sqrt{H - U(x;t)}} \frac{dH}{dJ} dJ \right\rangle_{J}$$

Nonlinear Poisson equation is used in the ABBOT code to find the potential:

$$\frac{\partial^2 U}{\partial x^2} = -k^2 U - 4\pi e^2 \delta n_{fas}$$
$$k^2 \equiv \omega_p^2 / \dot{s}^2$$

Perturbative Treatment of Mode Equation

Consider small deviation of the mode phase velocity from that of the initially unstable linear mode: $\delta s \equiv s - \dot{s}_0 \ll \dot{s}_0$

Derturbed Poisson equation:
$$\frac{\partial^2 U}{\partial x^2} + k_0^2 U = 2 \frac{\delta \dot{s}}{\dot{s}_0} k_0^2 U - 4\pi e^2 \delta n_{fast}$$

Lowest order solution is a sinusoidal wave: $U = U_0 \cos k_0 x$

Use the lowest order solution to calculate the small (red) terms:

$$\delta n_{fast} = \sqrt{\frac{2}{m}} \int_{trapped} \frac{F(J) - F_0(\dot{s})}{\sqrt{H - U_0 \cos(k_0 x)}} \frac{dH}{dJ} dJ - \left\langle \sqrt{\frac{2}{m}} \int_{trapped} \frac{F(J) - F_0(\dot{s})}{\sqrt{H - U_0 \cos(k_0 x)}} \frac{dH}{dJ} dJ \right\rangle$$

Solvability condition requires the red terms to be orthogonal to the lowest order solution, which relates the velocity shift to the mode amplitude:

$$\frac{\delta \dot{s}}{\dot{s}_0} = \frac{2e^2}{k_0 U_0} \int_{-\pi/k_0}^{\pi/k_0} \delta n_{fast} \cos(k_0 x) dx$$

Power Balance

Energy released by the fast particles goes into Ohmic heating of the bulk plasma.

Collisional dissipation in the bulk:

$$Q = 2\gamma_d n_0 \frac{1}{m\dot{s}^2} \int_0^\lambda U^2 \, dx$$

Power release via sweeping and drag (only trapped particle area is essential !):

$$P = -m\dot{s}\left(\frac{d\dot{s}}{dt} + \frac{\alpha^2}{k}\right) \int_{trapped} \left[F(J) - F_0(\dot{s})\right] dJ$$

Power balance condition (Q = P) determines sweeping rate.

□ Distribution function of passing particles remains close to their equilibrium distribution $F_0(\dot{s})$ in the vicinity of a hole or clump.

 $\Box \text{ Trapped particle equation:}$ $\frac{\partial F}{\partial t} = m \frac{v^3}{k_0^2} \frac{\partial}{\partial J} \left(J \frac{\partial J}{\partial H} \frac{\partial F}{\partial J} \right) - \frac{\alpha^2}{k_0} \left(\frac{\partial F_0}{\partial V} \right)_{T} - \beta \left(F - F_0(\dot{s}) \right)$

□ The trapped particle domain is $0 < J < J_s(t)$, where $J_s(t)$ is the value of the adiabatic invariant at the separatrix.

ABBOT Model: Separatrix Motion

Separatrix moves in phase space.
 Passing particles flow around the trapped area.

□ Frequency sweeping and/or drag tend to create a discontinuity at the separatrix.

Diffusive collisions broaden the step-like distribution function.

□ Kinetic equation needs to be solved for trapped particles only.

□ Passing particles provide a boundary condition at the separatrix : $F = F_0(\dot{s})$

ABBOT Model: Particle Trapping

□ Separatrix expands when the wave field grows.

Passing particles are captured and become trapped.

□ Conservation of phase space area determines the distribution of captured particles.

Diffusive collisions provide additional flux through the separatrix.

ABBOT Code Algorithm

- 1. Choose initial distribution function of trapped particles and calculate initial amplitude and phase velocity of a sinusoidal BGK wave perturbatively.
- 2. Advance trapped particle distribution function (kinetic equation)
- 3. Advance phase velocity of the wave (energy balance equation)
- 4. Advance wave structure and wave amplitude (Poisson equation)
- 5. Return to step 2.

Effect of Separatrix Filling on Sweeping Rate

 Partial filling of phase space hole (near the separatrix) increases the wave amplitude and enhances collisional dissipation.
 Filling the hole at the bottom has an opposite effect.

Sweep Reversal (Hook)

Analytic solution for long-range sweeping of a hole
 Separatrix shrinks during frequency sweeping
 Drag and Krook-type collisions lead to sweep reversal

ABBOT Model: Code Benchmarking

□ Simulation reproduces analytical solution for a clump

ABBOT Model: Collisionless Sweeping

□ Hole sweeps faster due to electron capturing!

Summary

□ New adiabatic code for long-range sweeping incorporates collisional processes and particle trapping/detrapping.

□ Only trapped particles are essential in the simulations.

□ Hole-clump asymmetry and evolution of the wave structure described.

□ Particle trapping into phase space hole can enhance sweeping rate.

