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TAEs and avalanches 

•  Toroidal Alfvén eigenmodes (TAEs) are weakly damped 
Alfvén waves in a toroidal plasma, often driven by ions 
whose velocity approaches the Alfvén velocity (or a fraction  
thereof) 

•  A TAE is characterized by a toroidal mode number, n, and 
may occur steadily or intermittently 

•  A burst in which several TAEs of differing n occur is termed 
an avalanche 

•  Avalanches produce drops in the neutron rate and losses of 
beam ions are sometimes observed concurrent with an 
avalanche 
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Typical avalanche in NSTX shows multiple n on Mirnovs 

  TAEs 
appear as 
burst 

  Beam ion 
re-
distribution 
stabilizes 
modes for a 
time 
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Avalanches can cause drop in neutron rate and burst of loss 

•  But, loss is not 
observed with 
every avalanche 

•  Pitch angle 
distributions of loss 
during avalanches 
sometimes differ 
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Any avalanche induced beam ion loss is measured with 
scintillator probe 
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Beam ion 
orbit

Scintillator probe: 
Combination of aperture 
geometry & B acts as magnetic 
spectrometer 
Fast video camera captures 
luminosity pattern on scintillator 
as function of time 
Γloss(ρ, χ, t)

NSTX probe: 
5 cm ≤ ρ ≤60 cm 
15° ≤ χ ≤ 80° 
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Avalanche induced loss often occurs over a wide range of 
pitch angles 

•  Interpreted as 
beam ion phase 
space being 
stochastized by 
multiple modes 
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Goal: compare measured and modeled lost ion pitch angle 
distributions  

•  Measured distribution recorded by scintillator probe 
•  Loss distribution modeled by guiding center orbit code that 

incorporates:  
–  Measured TAE n numbers, frequencies (Mirnov coils) 
–  Radial mode structures and amplitudes (multichannel microwave 

reflectometer data coupled to NOVA-K calculations of eigenmodes) 
–  Beam ion distribution function from TRANSP 
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Compare 2 similar discharges with avalanches to draw 
inferences about conditions when fast ions may be lost 
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Example avalanche with no loss observed 

•  n=2–5 present, but no 
loss evident on 
scintillator probe 

•  Neutron rate drops 
17% 

•  Single beam injecting 
at 90 kV 
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Case of no observed losses 

•  n=2–5 concurrently present in 
3 rapid bursts 

•  Neutron rate drops by 17%, 
yet no lost beam ions seen by 
detector 

•  Internal redistribution only? 
–  Might occur if modes are more 

core-localized with small edge 
amplitudes, but ρNB large in 
NSTX 

•  Could there be loss, but not to 
detector position? 
–  Not reasonable, given nature of 

transport and detector position 
(see following) 
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Beam ion orbits can be completely characterized by 3 
constants of the motion 

•  E = ½ mv2 (kinetic energy) 
–  Conserved on time scales short compared to collisional slowing down 

time; also roughly conserved in avalanche losses as these ions lost at 
injection energy 

•  µ = ½ mvperp
2/B (magnetic moment) 

–  Conserved in the absence of fields varying near the particle’s cyclotron 
frequency or field gradients shorter than length ρi 

•  Pφ =mvφR+qψpol (canonical angular momentum) 
–  Conserved in axisymmetry (i.e. in absence of nonaxisymmetric MHD or 

error field correction coil fields) 

•  Conservation conditions usually satisfied in NSTX 
•  Knowledge of these 3 parameters fully determines orbit 

(except toroidal position, φ, and gyromotion, which are not 
used in this work) 

•  This approach equivalent to guiding center orbit following 
11 



TTF 11– NSTX TAE Avalanche NBI loss (Darrow) April 8, 2011 

Deposited full energy beam distribution can be represented 
in (µ, Pφ) space, along with certain phase space boundaries 

•  blah 
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Phase space model also helps understand MHD loss 

•  Observed MHD frequencies <<Ωci, so µ will be conserved 
•  Mode destroys toroidal symmetry, so Pφ no longer constant 
•  Often, Eloss ≈Einj, so MHD convects ions at constant µ across 

loss boundary →observed lost µ range defines affected set  
•  Distance displaced in Pφ indicates strength of transport 
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Avalanche with beam ion loss 

•  As with previous 
avalanche, neutron 
rate drops 17% 

•   n=2–4 present 
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Loss evolves rapidly during avalanche 

•  blah 
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60° pitch angle loss appears first, then range of lower pitch 
angles 

•  Rapid appearance of wide pitch angle spot (18°–40°) in 33 
µs (≤10 toroidal transits) indicates transport of fast ions is 
very strong during avalanche 
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NOVA-K TAE radial eigenfunctions can be fit  to reflectometer 
fluctuation profiles of principal modes 

•  Displace-
ment can 
be 
matched, 
giving 
absolute 
amplitudes 
of various 
n modes 
for input 
into orbit 
following 
code 
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Orbit calculations have some features of observed signals 

•  ORBIT code (R. White) with 
modes & amplitudes of 
141711 gives rapid loss at 
λ=0.45, (χ=63°), in good 
agreement with first spot 
seen 

•  This is also µ where beam 
distribution is closest in Pφ to 
detector

•  However, ORBIT runs thus 
far do not duplicate wider, 
low pitch angle spot 

•  ORBIT predicts losses for 
both shots, but losses seen 
in only one 

18 

λ=v||/v



TTF 11– NSTX TAE Avalanche NBI loss (Darrow) April 8, 2011 

Conclusions 

•  TAE avalanches in similar NSTX plasmas sometimes 
produce fast ion loss at wall and sometimes do not 

•  Measured TAE amplitudes can be put into ORBIT code to 
compute effect on fast ions 

•  ORBIT results agree in part with observations, but there are 
some discrepancies 

•  But, improved matching of modes to measurements may be 
possible, and time variation of mode amplitudes should be 
accounted for 

•  Mode radial extent may play some role in whether losses are 
observed or not 
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