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Introduction

RSAE: shear Alfvén wave in the toroidal
geometry, localized near qmin, driven
unstable by energetic particles (fast
ions), frequency up-chirping

RSAE in local linear ideal MHD limit in
simple geometries is quite
well-understood [Berk et al., PRL 2001;
Breizman et al., PoP 2003, 2005; etc.]

Global effects, kinetic effects, nonlinear
effects, etc. are still worth studying

RSAE simulations by global gyrokinetic
toroidal code (GTC), with focus on
finite β and plasma current effects

ωRSAE ≈
vA
R

∣∣∣∣ mqmin
− n

∣∣∣∣

Experimental spectrogram
showing frequency up-chirping
of RSAEs driven by energetic
particles [Tobias et al., PRL
2011]
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Gyrokinetic simulation model in GTC
Thermal ions and fast ions are simulated using gyrokinetic PIC approach:

(∂t + Ẋ · ∇+ v̇‖∂v‖ )[f0(X, µ, v‖) + δf(X, µ, v‖, t)] = 0

[Brizard and Hahm, RMP 2007]
Electrons are simulated using the electromagnetic fluid-kinetic hybrid model
[Lin and Chen, PoP 2001; Holod et al., PoP 2009]. In this work, only the
adiabatic fluid part is used and they are described by the fluid equation:

0 = ∂t δne−δB · ∇
(

c

4πeB0
b0 · ∇ ×B0

)
+ B0 · ∇

(
n0e δu‖e

B0

)
+B0vE · ∇

(
n0e

B0

)
− n0e(δv∗e + vE) ·

∇B0

B0

+
c∇×B0

B2
0

·
[
−
∇ δP‖e
e

+ n0e∇ δφ
]

Gyrokinetic Poisson’s equation [Lee, JCP 1987] & Ampère’s law:

Z2
fnf

Tf
(δφ− δφ̃f ) +

Z2
i ni

Ti
(δφ− δφ̃i) =

∑
α=e,i,f

Zα δnα

c

4π
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∑
α=e,i,f

δJα‖

Blue: finite-β effects. Red: plasma equilibrium current effects. 2/17
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Reduction to ideal MHD, and RSAE equation

With appropriate approximations made, the gyrokinetic model
reduces to the ideal MHD equation:

ω(ω − ω∗P )

v2
A

∇2
⊥ δφ− iB0 · ∇

{
b0 · ∇ × [∇× (k‖ δφb0)]

B0

}
− iω
c
δB⊥ · ∇

(
b0 · ∇ ×B0

B0

)
−iω 4π

c
∇ ·
(

b0

B0
×∇ · δP

)
= 0

In a tokamak with concentric circular flux surfaces and in single n, m
limit, the equation reduces to the RSAE equation:

1

r

d

dr

(
rΛ

d

dr
δφ̂

)
− m2

r2
Λ δφ̂− D

r
δφ̂ = 0

Λ reflects the Alfvén continuum [Zonca et al., PPCF 1996]:

Λ =
ω2

v2
A

− k2
‖−
(

7

4
+
Te
Ti

)
2v2
i

v2
AR

2
0

D determines whether an eigenmode (RSAE) exists near the qmin

continuum extremum [Breizman et al., PoP 2005]:

D = k‖
dk‖
dr

+ rk‖
d2k‖
dr2
−3k‖

dk‖
dr
− rk‖

d2k‖
dr2

+Df +Dp +Dt
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Zero-β limit and benchmark with XHMGC

Simulation setup

GTC: concentric circular flux surfaces

XHMGC: shifted circular flux surfaces

Uniform background plasma

Equilibrium current artificially turned off
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Zero-β limit and benchmark with XHMGC

Antenna excitation of (n,m, l) = (4, 7, 0) RSAE

Alfvén continua and
power spectrum:
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Zero-β limit and benchmark with XHMGC

Antenna excitation of (n,m, l) = (4, 7, 1) RSAE
δφ poloidal contour:
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[Van Zeeland, NF 2009]
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Zero-β limit and benchmark with XHMGC

Drift-kinetic fast ion excitation of n = 4 RSAE
R0/Lnf0 = 36.6, vf/vA = 0.3, ρf/a = 0.03, k⊥ρf = 0.4, nf0/ne0 = 0.01

Fast ion density profile:
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Similar mode structure modification by fast ions is also seen in DIII-D

experiment and TAEFL simulation [Tobias et al., PRL 2011] 7/17
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Ion finite-β and FLR effects

Antenna excitation of (n,m, l) = (4, 7, 0) RSAE with
drift-kinetic thermal ion, damping rate measurement

vi/vA = 0.08, ρi/a = 0.008, kθρi = 0.1
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Ion finite-β and FLR effects

Antenna excitation of (n,m, l) = (4, 7, 0) RSAE with
drift-kinetic thermal ion, damping rate measurement

vi/vA = 0.08, ρi/a = 0.008, kθρi = 0.1
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Ion finite-β and FLR effects

Kinetic thermal ion and FLR effects on the mode structure

MHD + drift-kinetic fast ions,
no FLR, ωr = 0.107vA/R0,

γ = 0.0159vA/R0

Drift-kinetic thermal
& fast ions, no FLR,
ωr = 0.168vA/R0,
γ = 0.0174vA/R0

MHD + gyrokinetic
fast ions,
ωr = 0.108vA/R0,
γ = 0.0090vA/R0

W. Deng et al., Phys. Plasmas, 17, 112504 (2010)
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Equilibrium current effect

No RSAE with equilibrium current for this case√
〈δφ2〉f radial-time contour plots for (n,m, l) = (4, 6, 0) RSAE:

Without equilibrium current
Eigenmode exists, oscillation at
different location has same frequency.
Amplitude damps slowly.

With equilibrium current
Eigenmode doesn’t exist, oscillation’s
frequency at different location is the
local continuum frequency.
Amplitude damps quickly.
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Experimental spectrum

[Van Zeeland et al., PoP 2011 (in press); Tobias et al., PRL 2011]
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Equilibrium profiles

q-profile:
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n = 3 and n = 4 modes are being studied.

Result comparisons with GYRO and TAEFL are in progress.

Presented here are mostly GTC results. GYRO and TAEFL
results are probably presented in E. Bass’s and D. Spong’s talks.
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n = 3, zero-β ideal MHD, m = 10 initial perturbation
δφ poloidal contour plot:

m-harmonic decomposed |δφ|:

0 0.2 0.4 0.6 0.8 1

|δ
φ
|(

a.
u
.)

ρ

m = 8

m = 9

m = 10

m = 11

Alfvén continua w/o acoustic coupling:

Mode frequency:
ω/(2π) = 73.8kHz
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n = 3, finite-β gyrokinetic plasma, fast ion excitation
δφ poloidal contour plot:

m-harmonic decomposed |δφ|:
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Alfvén continua w/o acoustic coupling:

Mode frequency and growth rate:
ωr/(2π) = 93.4kHz, γ/ωr = 0.067

RSAE→TAE transition [Breizman et al.,
PoP 2003]
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n = 3, finite-β gyrokinetic plasma, fast ion excitation
δφ poloidal contour plot:

m-harmonic decomposed |δφ|:
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Mode frequency and growth rate:
ωr/(2π) = 93.4kHz, γ/ωr = 0.067
RSAE→TAE transition [Breizman et al.,
PoP 2003]
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n = 4, zero-β ideal MHD, m = 13 initial perturbation
δφ poloidal contour plot:

m-harmonic decomposed |δφ|:
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Alfvén continua w/o acoustic coupling:

Frequency:
ω/(2π) = 45.1kHz

Not an eigenmode, just continuum
oscillation.
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n = 4, zero-β ideal MHD, m = 13 initial perturbation√
〈δφ2〉f radial-time contour:

m-harmonic decomposed |δφ|:
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Alfvén continua w/o acoustic coupling:

Frequency:
ω/(2π) = 45.1kHz
Not an eigenmode, just continuum
oscillation.
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n = 4, finite-β gyrokinetic plasma, fast ion excitation
δφ poloidal contour plot:

m-harmonic decomposed |δφ|:
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Alfvén continua w/o acoustic coupling:

RSAE frequency and growth rate:
ωr/(2π) = 79.2kHz, γ/ωr = 0.118
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Summary
Electromagnetic gyrokinetic simulation model used in GTC is
presented and can be shown to reduce to ideal MHD theory with
appropriate approximations made.

In a simple geometry

GTC simulation results are benchmarked with XHMGC
and reasonable agreements are obtained. The discrepancy is
probably due to the difference in geometry and fast ion
model difference between the two codes.
Finite β raises the Alfvén continuum and thus raises the
RSAE frequency.
Thermal ion kinetic effects introduce ion damping and
modify the RSAE mode structure.
Fast ion FLR effect lowers the RSAE growth rate.
In the ideal MHD uniform background plasma limit without
toroidal coupling, the RSAE doesn’t exist with plasma
current effect.

Simulations of DIII-D discharge #142111 at 750ms successfully reveal
some RSAEs and TAEs. Comparisons with GYRO and TAEFL
results are in progress. 17/17
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