M3D-K simulation of beam-driven Alfvén modes in DIII-D

Jianying Lang¹
In collaboration with
G.-Y. Fu¹, Y. Chen², J. A. Breslau¹, J. Chen¹, G. J. Kramer¹ and M. A. Van Zeeland³

1. Princeton Plasma Physics Lab
2. U. of Colorado
3. General Atomics

Work is funded by DOE SciDac through Center for Nonlinear Simulation of Energetic Particles in Burning Plasmas

TTF Workshop, Apr. 6-9, 2011 in San Diego, CA
Outline

• Motivation

• Benchmark M3D-K with NOVA using model equilibrium in mhd limit

• Comparison of mode structure between M3D-K and NOVA with DIIIID equilibrium in mhd limit

• The effect of energetic particles on mode structure and frequency in M3D-K simulations

• Comparison with DIIIID measurement
Main equations for M3D-K code

- Momentum equation: \[\rho \frac{dv}{dt} = -\nabla p - \nabla \cdot p_h + J \times B \]

- Ohm’s law: \[E + v \times B = \eta J \]

- Continuity equation for plasma mass density: \[\frac{d\rho}{dt} = -\rho \nabla \cdot v \]

- Pressure equation for thermal plasmas: \[\frac{dP}{dt} = -\gamma P \nabla \cdot v \]

- The particle pressure is calculated from particle distribution:

 \[P_{\parallel}(x) = \int M v_{\parallel}^2 \delta(x - X - \rho_h) F(X, v_{\parallel}, \mu) d^3X d\nu_{\parallel} d\mu d\theta \]

 \[P_{\perp}(x) = \int M v_{\perp}^2 \delta(x - X - \rho_h) F(X, v_{\parallel}, \mu) d^3X d\nu_{\parallel} d\mu d\theta \]
Introduction to M3D-K (continued)

- Drift kinetic model is used to describe energetic particles and single fluid model is used to describe thermal plasmas. The model is fully nonlinear.

- The code uses numerically-calculated equilibrium including finite beta, finite aspect ratio and shaping.

- Energetic particle collision, source and sink are included.

- Turbulence-induced energetic particle radial diffusion is included.
Model equilibrium for $n=2$, $m=4$ RSAE

$\beta=0$ and uniform plasma density are applied in this model.
n=2, m=4 RSAE model equilibrium is used to benchmark M3D-K and NOVA with analytical theory.

At low q_{min}, simulation shows mode transits from RSAE to TAE.
Mode structure of $n=2$, $m=4$ RSAE agrees well between NOVA and M3D-K with model equilibrium

Simulation results at $q_{\text{min}}=1.84$
DIII-D discharge #142111
Equilibrium of DIII-D discharge #142111 at time slice T~ 540ms

$\beta_{\text{tot}} = 1.84\%$, $\beta_{\text{hot}} = 0.4\beta_{\text{tot}}$, and uniform plasma density are applied in this model.
Mode structure of $n=2$ at $q_{\text{min}}=3.86$ agrees well between NOVA and M3D-K with mhd limit.
Energetic particles affect $n=2$ mode structure

- Mode rotates along poloidal direction
- Mode peak shifts from q_{min} location to outside
- Mode width becomes broader
Linear mode frequency of n=2 mode is not sensitive to q_{min} or fast particle pressure.

$\beta_{\text{hot}}/\beta_{\text{total}}$ increases from 4% to 40%.

$q_{\text{min}} = 3.86$ and $q_{\text{min}} = 3.92$.
Linear mode frequency of n=3 mode is not sensitive to q_{min}

For $T \sim 540$ ms DIII-D equilibrium

- $\beta_{\text{hot}}/\beta_{\text{total}}$ increases from 4% to 40%
- $q_{\text{min}}=3.83$
- $q_{\text{min}}=3.97$
Nonlinear evolution of n=3 mode energy at $q_{\text{min}}=3.97$
Poloidal harmonics of n=3 mode at $q_{\text{min}}=3.97$

\begin{align*}
T &= 250/\omega_a \\
T &= 310/\omega_a \\
T &= 350/\omega_a \\
T &= 400/\omega_a \\
T &= 480/\omega_a \\
T &= 620/\omega_a
\end{align*}
Middle plane mode amplitude of n=3 mode at $q_{\text{min}}=3.97$ of DIII-D equilibrium

- $T=250/\omega_A$
- $T=310/\omega_A$
- $T=350/\omega_A$
- $T=400/\omega_A$
- $T=480/\omega_A$
- $T=620/\omega_A$
Nonlinear evolution of n=3 mode frequency at \(q_{\text{min}} = 3.97 \) at different location
DIII-D discharge #142111

- n=6 RSAEs
- n=5 RSAEs
- n=4 RSAEs
- n=3 RSAEs
- n=4 RSAEs
- n=5 RSAEs

Frequency (kHz)
Time (ms)
DIII-D equilibrium at time slice around $T \sim 725\text{ms}$

$\beta_{\text{tot}} = 1.84\%$, $\beta_{\text{hot}} = 0.4\beta_{\text{tot}}$

Theory indicates dominant RSAE being $n=3$, $m=10$.
Linear mode frequency of n=3 mode is not sensitive to q_{min}
Mode structure of $n=3$ at $q_{\text{min}}=3.25$ shifts outside in the presence of energetic particles compared to NOVA result.

NOVA result

M3D-K result

Plasma displacement in the middle plane

DIII-D equilibrium around time slide $T=725$ ms
Nonlinear evolution of mode kinetic energy and mode frequency at $q_{\text{min}}=3.25$

Mode frequency is measured near q_{min} location.

Frequency shifts in the nonlinear stage indicates the linear mode transits to a different one.

No source/sink
Poloidal harmonics of $n=3$ mode at $q_{\text{min}}=3.25$ of DIII-D equilibrium

$T = \frac{456}{\omega_A}$

$T = \frac{600}{\omega_A}$

$T = \frac{726}{\omega_A}$

$T = \frac{852}{\omega_A}$
Middle plane mode amplitude of $n=3$ mode at $q_{\text{min}}=3.25$ of DIII-D equilibrium

\[T = \frac{456}{\omega_A} \quad T = \frac{600}{\omega_A} \quad T = \frac{726}{\omega_A} \quad T = \frac{852}{\omega_A} \]
Conclusion

• M3d-K simulation results agree very well with NOVA in the MHD limit

• In the presence of energetic particles, both mode structure and mode frequency are different from the results in MHD limits

• The frequency of excited mode does not sweep as qmin varies, which indicates it is TAE-like mode

• Both mode structure and mode frequency change during nonlinear evolution
Future work

- Code benchmark with GEM
- To explore the effects from energetic particle profile including realistic beam distribution function
- Nonlinear evolution with source and sink
n=3, m=12 at q_min =3.83 from M3D-K for the same DIIIID equilibrium

Linear mode structure

Nonlinear mode structure
The time evolution of mode kinetic energy and mode frequency at $q_{\text{min}}=3.20$

Mode frequency is measured near q_{min} location.

Frequency shifts in the nonlinear stage indicates the linear mode transits to a different one.
Poloidal harmonics of $n=3$, $m=10$ modes at $q_{\text{min}}=3.20$ of DIII-D equilibrium

$T = \frac{456}{\omega_A}$

$T = \frac{600}{\omega_A}$

$T = \frac{726}{\omega_A}$

$T = \frac{832}{\omega_A}$
Middle plane mode amplitude of n=3, m=10 modes at $q_{\text{min}}=3.20$ of DIII-D equilibrium

\[
\begin{align*}
T &= 456/\omega_A \\
T &= 600/\omega_A \\
T &= 726/\omega_A \\
T &= 832/\omega_A
\end{align*}
\]