M3D-K simulation of beam-driven Alfvén modes in DIIID

Jianying Lang¹

In collaboration with

G.-Y. Fu¹, Y. Chen², J. A. Breslau¹, J. Chen¹, G. J. Kramer¹ and M. A. Van Zeeland³

- 1. Princeton Plasma Physics Lab
- 2. U. of Colorado
- 3. General Atomics

Work is funded by DOE SciDac through Center for Nonlinear Simulation of Energetic Particles in Burning Plasmas

TTF Workshop, Apr. 6-9, 2011 in San Diego, CA

Outline

- Motivation
- Benchmark M3D-K with NOVA using model equilibrium in mhd limit
- Comparison of mode structure between M3D-K and NOVA with DIIID equilibrium in mhd limit
- The effect of energetic particles on mode structure and frequency in M3D-K simulations
- Comparison with DIIID measurement

Main equations for M3D-K code

- > Momentum equation: $\rho \frac{d\mathbf{v}}{dt} = -\nabla \mathbf{p} \nabla \cdot \mathbf{p_h} + \mathbf{J} \times \mathbf{B}$
- > Ohm's law: $\mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{J}$
- > Continuity equation for plasma mass density: $d\rho/dt = -\rho \nabla \cdot \mathbf{v}$
- \blacktriangleright Pressure equation for thermal plasmas: $dP/dt = -\gamma P \nabla \cdot \mathbf{v}$
- > The particle pressure is calculated from particle distribution:

$$P_{\parallel}(\mathbf{x}) = \int M v_{\parallel}^2 \delta(\mathbf{x} - \mathbf{X} - \mathbf{\rho}_{\mathbf{h}}) F(\mathbf{X}, v_{\parallel}, \mu) d^3 \mathbf{X} dv_{\parallel} d\mu d\theta$$
$$P_{\perp}(\mathbf{x}) = \int M v_{\perp}^2 \delta(\mathbf{x} - \mathbf{X} - \mathbf{\rho}_{\mathbf{h}}) F(\mathbf{X}, v_{\parallel}, \mu) d^3 \mathbf{X} dv_{\parallel} d\mu d\theta$$

Introduction to M3D-K (continued)

➢ Drift kinetic model is used to describe energetic particles and single fluid model is used to describe thermal plasmas. The model is fully nonlinear.

> The code uses numerically-calculated equilibrium including finite beta, finite aspect ratio and shaping.

> Energetic particle collision, source and sink are included.

> Turbulence-induced energetic particle radial diffusion is included

 β =0 and uniform plasma density are applied in this model.

n=2, m=4 RSAE model equilibrium is used to benchmark M3D-K and NOVA with analytical theory

At low q_{min}, simulation shows mode transits from RSAE to TAE.

Mode structure of n=2, m=4 RSAE agrees well between NOVA and M3D-K with model equilibrium

Simulation results at qmin=1.84

DIIID discharge #142111

 $\beta_{tot}=1.84\%$, $\beta_{hot}=0.4\beta_{tot}$, and uniform plasma density are applied in this model.

Mode structure of n=2 at qmin=3.86 agrees well between NOVA and M3D-K with mhd limit

Energetic particles affect n=2 mode structure

- Mode rotates along poloidal direction
- Mode width becomes broader

DIIID discharge #142111

Linear mode frequency of n=2 mode is not sensitive to qmin or fast particle pressure

Linear mode frequency of n=3 mode is not sensitive to qmm

For T~540 ms DIIID equilibrium

Nonlinear evolution of n=3 mode energy at

Poloidal harmonics of n=3 mode at qmin=3.97

Middle plane mode amplitude of n=3 mode at q_{min}=3.97 of DIIID equilibrium

Nonlinear evolution of n=3 mode frequency at q_{mm}=3.97 at different location

DIIID discharge #142111

DIIID equilibrium at time slice around T~ 725ms

Linear mode frequency of n=3 mode is not sensitive to qmm

Mode structure of n=3 at q_{min}=3.25 shifts outside in the presence of energetic particles compared to NOVA result

DIIID equilibrium around time slide T=725 ms

Nonlinear evolution of mode kinetic energy and mode frequency at

Mode frequency is measured near q_{min} location.

Frequency shifts in the nonlinear stage indicates the linear mode transits to a different one.

No source/sink

Poloidal harmonics of n=3 mode at qmin=3.25 of DIIID equilibrium

Middle plane mode amplitude of n=3 mode at q_{min} =3.25 of DIIID equilibrium

Conclusion

- M3d-K simulation results agree very well with NOVA in the MHD limit
- In the presence of energetic particles, both mode structure and mode frequency are different from the results in MHD limits
- The frequency of excited mode does not sweep as qmin varies, which indicates it is TAE-like mode
- Both mode structure and mode frequency change during nonlinear evolution

Future work

- Code benchmark with GEM
- To explore the effects from energetic particle profile including realistic beam distribution function
- Nonlinear evolution with source and sink

n=3, m=12 at q_min =3.83 from M3D-K for the same DIIID equilibrium

Linear mode structure

The time evolution of mode kinetic energy and mode frequency at

Mode frequency is measured near q_{min} location.

Frequency shifts in the nonlinear stage indicates the linear mode transits to a different one.

Poloidal harmonics of n=3, m=10 modes at q_{min}=3.20 of DIIID equilibrium

Middle plane mode amplitude of n=3, m=10 modes at q_{min} =3.20 of DIIID equilibrium

