Turbulent Transport of Fast Ions in the Large Plasma Device

Shu Zhou, W. W. Heidbrink, H. Boehmer, R. McWilliams

Department of Physics and Astronomy, University of California, Irvine, California 92697

T. Carter, S. Vincena, S. K. P. Tripathi

Department of Physics and Astronomy, University of California, Los Angeles, California 9009

Energetic Ions are Confined Better than Thermal Ions in Electrostatic Microturbulence

- Large orbits of fast ions phase average over electrostatic microturbulence with decorrelation lengths on the scale of thermal ion gyroradius
- Transport reduces with higher fast ion energy due to phase averaging
- Direct, quantitative measurement of fast ion transport in turbulent wave is possible in LAPD

Outline

• Fast Ion Diffusion In Waves : Energy Scaling

• Fast Ion Diffusion In Waves : L_{corr} , k_{θ} Dependence

• Time Dependence of Fast Ion Diffusivity

Experimental Setup for Fast-ion Transport in Turbulent Waves

- Li⁺ beam gyro-radius is adjusted by changing fast ion energy (400eV-1000eV, with background plasma $T_e \sim 5eV$) and pitch angle
- \bullet Li^+ beam orbit overlaps partially/fully with turbulent drift waves region
- Planar scan of collector measures beam spreading

Outline

• Fast Ion Diffusion In Waves : Energy Scaling

• Fast Ion Diffusion In Waves : L_{corr} , k_{θ} Dependence

• Time Dependence of Fast Ion Diffusivity

Broadband Drift Waves Induced at the Plate Obstacle Edge

Broadband Drift Waves Induced at the Plate Obstacle Edge

Fast-Ion Transport Decreases with Increasing Fast-Ion Energy

Gyro-Averaging Theory Explains Energy Dependence of Transport

*Assuming L_{corr} scales the same for potential and density in drift wave turbulence

Outline

• Fast Ion Diffusion In Waves : Energy Scaling

• Fast Ion Diffusion In Waves : L_{corr} , k_{θ} Dependence

• Time Dependence of Fast Ion Diffusivity

Drift Waves with Cylindrical Geometry Induced By Annulus Obstacle

Drift Waves with Different Mode Numbers (k_{θ}) in Helium or Neon Plasmas

-10

0.02

Radius (cm)

- Helium plasma (no bias on annulus @ Aug 2010)
- m = 6 ~ 8
- *Long* azimuthal correlation (*L_{corr}* ~ 23 cm)
- Small azimuthal structure size $(k_{\theta} = m/\rho_f \sim 1.16 \text{ cm}^{-1})$
 - Neon plasma (75V bias on annulus @ Oct 2010)
 - m = 1 ~ 3

10

5

X (cm)

- *Long* azimuthal correlation (*L_{corr}* ~ 19 cm)
- *Large* azimuthal structure size $(k_{\theta} = m/\rho_f \sim 0.5 \text{ cm}^{-1})$

Drift Waves with Larger Scale Size Cause More Fast Ion Transport

Two Wave Correlation Length Regimes were Made in Helium Plasma

- Helium plasma (no bias on
- 5 annulus @ Aug 2010)
 - m = 6 ~ 8
- Long azimuthal correlation (L_{corr} ~ 23 cm)
- Small azimuthal structure size $(k_{\theta} = m/\rho_f \sim 1.16 \text{ cm}^{-1})$
 - Helium plasma (100V bias on annulus @ Aug 2010)
 - broadband
 - Short azimuthal correlation
 (L_{corr} ~ 6cm)
 - Small azimuthal structure size $(k_{\theta} = m/\rho_f \sim 1.16 \text{ cm}^{-1})$

Turbulent Waves Cause More Fast-Ion Diffusion Than Coherent Waves

Test Particle Gyro-Center Trajectory for Coherent Wave shows Gyroaveraging Effect

$\label{eq:corr} Transport-driving \ \varphi \ averaged \ over \ gyro \ orbits \\ depends \ on \ L_{corr} \ and \ k_{\theta}$

• Wave potential (amplitude) modeled by:

$$\phi(r,\theta,t) = \sum_{m} \phi_{m} \cdot \sin(m\theta + \omega t + \theta_{0})e^{(-\frac{(r-r_{0})^{2}}{a})}$$

• Gyro averaging is applied along an offaxis orbit:

$$\overline{\phi}(r,\theta) = \sum_{k} \phi_{k} e^{ik \cdot x} \cdot J_{0}(k\rho_{f})$$

 \circ Gyro-averaged ϕ decreased with decreasing potential scale length

 \circ Gyro-averaged ϕ decreased with waves having less number of modes

Outline

• Fast Ion Diffusion In Waves : Energy Scaling

• Fast Ion Diffusion In Waves : L_{corr} , k_{θ} Dependence

• Time Dependence of Fast Ion Diffusivity

Wave-Particle Correlation Results in Super-Diffusive & Sub-Diffusive Transport

$$D(t) = \int_0^t d\tau \cdot L_{ii}(\tau),$$

where $L_{ii}(t) = \langle v_i(0,0)v_i(x,t) \rangle = \langle (v_c + v_E)|_{(0,0)} \cdot (v_c + v_E)|_{(x,t)} \rangle$
 $\cong \langle v_E(0,0)v_E(x,t) \rangle$

T. Hauff and F. Jenko, Phys. Plasmas 15, 112307(2008)

 $\tau_{ci} < \tau_{drift} < \tau_{corr}$

Fast Ion Radial Diffusivity in Super-Diffusive Regime is Observed

Sub-Diffusive Regime is Observed when Fast Ion Time-of-Flight Exceeds Wave Half Period

Conclusions

In experiment with plate obstacle:

• Fast ion transport decreased with increasing fast ion energy

S. Zhou et al., Phys. Plasmas 17, 092103 (2010)

In experiment with annulus obstacle:

O Waves with larger spatial scale size caused more fast-ion transport
O Turbulent waves caused more fast-ion transport than coherent waves

<u>Beam diffusivity versus time</u>

Transport is super-diffusive when fast ion time-of-flight << wave period
Transport is sub-diffusive when fast ion time-of-flight exceeds half the wave period

Backup Slides

Radial Fast Ion Beam Profile is Analyzed to Determine Transport

Sub-Diffusion Regime is Observed when Fast Ion Time-of-Flight Exceeds the Wave Correlation Time

Sample I_{sat} & V_{float} Signals

Isat Profile: Large cross field Transport Observed in several cases with large bias/small B field

Drift Wave with Larger Scale Size Cause More Fast Ion Transport

Fast Ion Transport in Long Time Scale is Studied by Operating the Source at Various Pitch Angle

Wave-Particle Correlation Results in Super-Diffusive & Sub-Diffusive Transport

$$D(t) = \int_{0}^{t} d\tau \cdot L_{ii}(\tau),$$
where $L_{ii}(t) = \langle v_{i}(0,0)v_{i}(x,t) \rangle = \langle (v_{c} + v_{E})|_{(0,0)} \cdot (v_{c} + v_{E})|_{(x,t)} \rangle$

$$\equiv \langle v_{E}(0,0)v_{E}(x,t) \rangle$$
(a) $\overline{v_{E}} \cdot \tau_{geletern}$
• leads to
non-diffusive
transport
(b) \cdot leads to
diffusive
transport
 $\overline{V}_{E} \cdot \tau_{ci} << L_{corr}$
 $\tau_{ci} < \tau_{drift} < \tau_{corr}$

Lithium Ion Source Developed by UC Irvine Fast-ion Group

H. Boehmer, et al, Rev. Sci. Instrum. , Vol. 75, 1013 (2002) G. Plyushchev, et al, Rev. Sci. Instrum. 77, 10F503 (2006) Y. Zhang, et al, Rev. Sci. Instrum. , Vol. 78, 013302 (2007)

- Alkali ion emitter is heated to ~1200 K for Li⁷ ion emission.
- Double grids form a accelerate decelerate configuration
- Emitter is biased to 400V ~ 1000V to control the energy of the Li⁷ ion beam
- Front aperture controls the Li⁷ beam initial width
- Typical beam current density ~ $300 \ \mu\text{A/cm}^2$, initial width ~ 5mm

Collimated Fast Ion Collector measures wave-modulated Fast Ion Signal

- Ion Collector can be rotated to match the pitch angle of the beam
- Negatively biased (-9V) 1st grid and Positively biased (+46V) 2nd grid effectively repel thermal electrons and ions
- The collimation design of the collector avoid thermal particle collection geometrically
- The collector has an acceptance angle of ~ 15 degree.

Advantages & Limitations of Current Experimental Setup

Advantages:

- Probe accessible, high density plasma environment
- Good visualizing ability, 2D probe drive with ~1mm radial resolution
- Tunable drift wave instability by density and temperature gradient

•similar scale of dimensionless parameters related to Tokamak: $\frac{E}{T_{i,e}}, \frac{\delta n}{n}, \frac{\tau_c}{\tau_f}$ *Limitations*:

- •Wave-particle interaction time is limited by source-collector distance (< 2 meter)
- Small Fast-ion beam signal (~ 10nA), signal/noise drop with beam diffusion.
- •Fast-ion orbit has only gyro averaging, no drift orbit averaging

Wave - Particle Correlation Results in Non-Diffusive (Ballistic) Transport

- Classical diffusion: $D_{cl} = const$ $W_{FWHM}^2 = 8 \ln 2[\langle (\Delta r_0)^2 \rangle + 2D_{cl}t]$
- Turbulent wave induced diffusion:

$$D_{dr}(t) = \overline{\upsilon_{E}}^{2} t$$

$$W_{FWHM}^{2} = 8 \ln 2[\langle (\Delta r_{0})^{2} \rangle + 2(D_{cl} + D_{dr})t]$$

$$= 5.545[\langle (\Delta r_{0})^{2} \rangle + 2D_{cl}t + 2\overline{\upsilon_{E}}^{2}t^{2}]$$

• Observed spreading in wave combines *classical diffusion* and *ballistic transport*

• Analytical model is well fitted into observed data

Monte Carlo Test-Particle Simulation in a BOUT Simulated Wave Field confirms the Analytical Model

scaling as experimental results

Test Particle Simulation in Experimental Wave Field Shows Consistent Sub-Diffusion Effect

• Experimentally measured wave pattern by 2-point correlation scan is used to model the background wave potential.

 \circ Fast ion transport simulated by a test particle beam in such wave field shows very similar sub-diffusion effect when τ_f exceeds (T_{drift} / 2)