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Thought for the Day — from “M.A.S.H.”

* Question:

— "How did a pervert like this ever get to be an
officer in the United States Army”?” — Hot Lips

 Answer:
— “He was drafted” - Chaplain
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Outline

« Some important things we “Don’t Understand” about intrinsic rotation
and toroidal momentum transport

* Reversals (primarily OH) : a theorist’s perspective

 Routes to an explanation
— the residual stress : a wave momentum approach
— reversal mechanisms and their signatures

* OH reversals in a broader context
— LOC — SOC — IOC/RI

N pITB

— Implications for reversals and possible tests
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Outline (cont’d)

* Using reversals to probe the boundary

 Conclusions and DISCUSSION
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Some Important Issues We Don’t Understand

« Reversals

— OH: TCV, C-Mod

« appears linked to LOC — SOC cross-over / CTEM-ITG
transition

+ exhibits many features of transport bifurcation without
enhanced energy confinement

— RF reversals (and q(r) structure?): C-Mod, DIII-D...
« LHCD, ECH can reverse core intrinsic rotation
« q(r), V., mode propagation direction change?
* relation to OH inversions?
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Some Important Issues We Don’t Understand (cont’d)

 Effective boundary condition

— The interplay of turbulence and wave scattering with neoclassical
effects and orbit loss in determining the boundary condition for intrinsic
rotation — need quantify the amount of ‘slip’

— The detailed interplay between core intrinsic torque and the edge
boundary condition, and its role in determining net rotation direction.
The connection between SOL flows and core rotation

« Saturation of intrinsic rotation
— turbulence quench
— EM effects — stress competition

* All meet at topic of reversals
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OH Reversals: Overview

* OH Reversals

— Selected observations, from a theorist’s perspective

— Thanks to John Rice and C-Mod !
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Scaling of Reversal Density with Plasma Current and Magnetic Field

best fit relation: nBO'6/Ip = 2.8
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Rotation Reversal and Change from LOC to SOC Correlated
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Transient ‘Spike’in Edge Rotation in Direction Opposite Original Rotation
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Some Comments

Reversal is novel type of momentum transport bifurcation

Note clear indication of:
— threshold
— hysteresis
— but no confinement enhancement, as in L—H (!?)

Suggestion of

— close relation of reversal and OH “regime change”
i.,e. LOC — SOC

— (' clamps at reversal

— change in turbulence?, place in bigger picture (I10C?)
Edge plays a role

— transient spike observed

— TCV: some differences between limited, diverted

classic ‘'symptoms’
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I1l. Addressing the Phenomenology

I Focus: Off-Diagonal Momentum Flux in Electrostatic Drift Wave
Turbulence - Non-Diffusive stress

Il Beyond “Diffusion and Convection”
— particle number conserved —» 1, = — <”>
. pinch is only “off-diagonal” for partlcles “
- but: wave-particle momentum exchange possiblel

\”>

[Ir,p = (n) (Urls) + (vg) (it
- 0 (vg) sid d i g
(o) = —Xo—p — + V{vg) + I 1™ is critical
—  residual stress/flux possible and distinct from pinch
—  residual stress acts with boundary condition to generate intrinsic

rotation

— need either [1/¢%7 =0

bndry

ooy -+ (0 or V<v¢>

NEREES e 15 =< UCSD



iii. Key Theoretical Issues — I1/%

—  flux of wave momentum?
— origins of symmetry breaking?
—  boundary conditions?

a) Wave Momentum (P.D. et al. 2008)

—  Momentum Budget: Jl Resonant + Non-Resonant
Particles + Fields

“Non-Resonant” = “Waves”
—  Wave momentum flux crucial for fluid-like DWT
a) Calculating H;}jﬁ'l’e

+ Necessary to compute radial flux of parallel mom. < I} = gk Ni
* In simplest scenario, finite momentum flux requires: ’

— radial wave flux < (y,,.} # 0

— symmetry breaking < (k) #£0
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Wave Momentum Flux

* Proceed via Chapman-Enskog expansion (radiation hydrodynamics in
large optical depth limit) in Wave Kinetics
— in short mean free path limit, expansion parameter given by:
Te k ('l-‘gr/Ll) s Te k <l-'E>, ~ &
 Lowestorder: Cu (INx) =0 => saturated spectrum due to wave interactions

. A (N d (N
* Nextorder, yields: 0Ny = —Tc_krgrg + 7o ke (vg) < k)
+ or f Ok,

/
¢ 1stterm ~ ’Tc_k/r’f']n N « 2term~ Te k <'L‘E:>

K,
I I
v - 11
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Wave Momentum Flux (cont'd)

« Wave momentum flux:

) N , 0 (i)
].—.[7 || — /\(lklw| {(l’()r) (&\k> o T(‘.k'l“gl‘ ()I

— . NN PN
+ 7 C.kigrAB \'LE>

/ J <*"\Tk>
Ok

« Second term < radiative diffusion of quanta
— requires gradient in turbulence intensity profile (universally increasing)
— related to momentum flux from edge?

* Third term <« refraction induced wave population imbalance
— crucial for regimes of strong shear flow
—most active near edge, or ITB
—sensitive to L—H mode transition, local steepening in V P
— mode dependence, via * dependencev,,

NEREES . 18 =< UCSD



Wave Momentum Flux (cont'd)

. Mechanisms of symmetry breaking: — Moments of W.K_.E.

-

1. Influx: radial inflow of wave momentum F T

-t

—  potentially critical in edge region -

- gag)iures possible influx of momentum from A flux SOL

2. Wind-up: mode sheared by poloidal velocity —
— ala’ spiral arm
—  requires magnetic shear, i.e. Ok /0k, #0 _ / ~

— critical in barrier regions, either pedestal or N N\ ]
ITB, but not limited to these

3. Growth asymmetry

— enters due to parallel velocity shear - unlikely
4. Refraction due to GAMs — refractive force

— largely unexplored

—  likely to be most important near edge
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* Reversals and drift wave turbulence
— intrinsic torque 7, = —0 1177
— reversal < 7, sign flip !

— how flip 7, ? — flip sign V!
l.e.V, ~ V,so natural to expect 7, flips when

v, direction flips ! (P.D. 2008)

« Natural hypothesis that reversals occur when
turbulence evolves from CTEM to ITG (TCV suggested
reversal coincides with linear stability change)

- Change in sign (4,) is another possibility
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 Further

— need 7 to flip in sufficiently broad region — extent
of ITG excitation highly relevant — n__, ?!

crit * -
— origin of hysteresis:
« co-existence of and competition between ITG and CTEM!
 turbulence spreading (?!)
l.e. penetration of ITG —- CTEM # CTEM — ITG
e obvious parallel withL - Hand H — L
I.e. penetration of H into L # penetration of L into H

(L-mode transport) (H-mode/neo transport)

* interesting simulation study (somebody, please ...!)
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a) Electromagnetics and Saturation

Resonant component of turbulent momentum flux is proportional to |4F |2
— Inclusion of inductive component allows for reduction/enhancement
of c‘;E"

* Forlarge aspect ratio. a quasilinear calculation vields resonant
component (McDevitt, P.D., PoP2009)

HE‘S
Hi:)r _ Y ||+ —
£ (1+ Rexih)
Rexit® ~ 3 (¢R/L,)” — either high ? or steep density gradients
lead to significant EM impact

« Fordrift waves: Reyi! > 0 + ForITG: Rey;" <0

— novel means of quenching H,’,ES — slight enhancement of Hf'q
for high 3 or steep density grad. above level predicted by ES
prediction

— model asymmetry!

* Non-resonant component qualitatively similar, with important
exception that only off-diagonal terms are modified to lowest order
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a) Electromagnetics (cont'd)

« Alfven waves provide alternate channel for momentum transport aside
from well studied limit of ES microturbulence — B.P. relevant

+ Off-diagonal component of momentum flux requires finite 4 £
« KSAWSs provide natural candidate for transport of parallel momentum

— dispersive corrections introduce a J C— W
radial group velocity/finite 4 F B
— mode conversion of TAEs at resonant
surfaces provide robust generation
mechanism

«— C’“'L

-100 " L L L L L ;
c =] Q 15 20 a3 =0 = 40 43 =

B(qR/Ly)*
* Residual stress for each branch computed via a quasilinear
calculation

— Imbalance in Elsasser populations required for finite levels of off-
diagonal transport

— symmetry breaking likely induced by asymmetry in energetic particle
drive
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iv) OH Reversals in a Broader
Context...
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Figure 6: The rotation reversal density as a function of the transition density between
linear and saturated energy confinement. Magnetic fields and plasma currents for each
point are listed. The dotted line has a slope of unity.
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» Data suggests excellent correlation between
reversal and LOC — SOC

 Recall trends:

Classics: |OC
/! Global, peaked n states

LOC 7TSOC \ R| with ~ LOC confinement

reversal

New: (W. Xiao, et al, 2010)

LOC — p-ITB — Locally, steepened n state with
n 1 enhanced particle (and energy?)

(threshold) confinement

7 { [, =< UCSD



» Key Q and A:
Q: Why does n(r) peak ?
A: ITG drives inward V_,,, = Vigp + V

thermo

| “self-healing” feedback

Q: origin of confinement improvement?
A: ITG quenched (B.C., M.N.R.- in B.C. epoch)
Q: What of p-ITB?
A:n>n_,— ITG — V<0 — Vn/n steepens
— <V>" — turbulence reduced
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Unified Mechanism and Feedback Loop

lon Heating _ |7/7//7

- SOC
- n>n., steepens

;4 or Viynt IOC/RI (global
Ve’ ~ (Vn/mpP 1 P-ITB(SIJO(():aIa)

— EXB sheer suppression
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* Implication for reversals
— is there a reversal in p-ITB ? (HL-2A)
— if : LOC — SOC — 10C; (C-Mod?)
(TEM — ITG — TEM)
« 2reversals ?
* net hysteresis ?
* back-reversal threshold ?
— if : LOC — p-ITB — 10C; (HL-2A)
« 2reversals ?
* back-reversal triggered by Z-injection

— many interesting studies suggested...
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Transient Spike — Probe of Edge B.C.

* True edge B.C. poorly understood
“no slip” is intellectual crutch
¢ Spike
— reflects how boundary disposes of excess momentum due
reversal
— possible probe of boundary dynamics
« So Study Spikes !

— vary deviation from reversal criticality — scan rate, size,
etc of reversal?

— propagation to boundary, lifetime and dissipation of spike?
— response of edge fluxes?
— what knobs control spikes? (n,, limiters vs divertors, ...)
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Questions for Discussion

 What common features do OH and RF-induced
reversals exhibit? (spikes? hysteresis?)

* Might R.F.I.R. be related to:

— mode population change?
— (r) structure change”?

* Theoretical picture of co-existing, competing
ITG and CTEM?

* Other means toflip 7.7

Intr*
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