The Dependence of Lower Hybrid Current Drive Induced Rotation Direction on Plasma Current and Magnetic Configuration

Y. A. Podpaly¹, J.E. Rice¹, R. R. Parker¹, M. L. Reinke¹, L. Delgado-Aparicio², G. Wallace¹, S. Shiraiwa¹, O. Meneghini¹, C. Gao¹

¹ MIT Plasma Science and Fusion Center Cambridge, MA 02139

² Princeton Plasma Physics Lab Princeton, NJ 08540

Outline

- Motivation
- History of Lower Hybrid Current Drive Induced Rotation
- Recent Experiments on C-Mod
- Possible explanations and future experiments
- Summary

The effects of non-inductive current drive on plasma behavior are important for tokamaks

- RF current drive systems are expected to exist on future tokamaks
- Lower hybrid current drive (LHCD) is present on Alcator C-Mod and is one possible RF system
- Rotation has been an area of active research and has a variety of beneficial effects on plasma behavior
- Sources of plasma momentum are important to understand for reactor predictability

Alcator C-Mod has observed LHCD induced rotation in the past

- C-Mod first observed
 LHCD induced rotation in
 2007
- Rotation was always counter-current

It was observed to scale with ℓ_i, P/n_e, and inversely with n₁₁=ck₁₁/ω
 The effect seemingly started at the core of the plasma and diffused outward

J. E. Rice et al. Nucl. Fus. 49:025004. 2009. Y. A. Podpaly TTF 2011

Very strong dependence seen with internal inductance and n₁₁

The behavior seemed fairly straightforward
The effect was explained by accounting for the direct momentum input from the wave

 Possible explanation also was the fast electron pinch

Other machines have also observed LHCD induced plasma rotation

- **Co-current** rotation was observed, however, on both JT-60U and Tore Supra
- The effect was suggested to be due to ripple losses of electrons
- C-Mod has a much smaller ripple, so this seemed to explain the issue
- Still this was a wide open question on the rotation

Y. Koide et al. IAEA-CN-56/E-3-11. 1993.
P. Platz et al. 22nd EPS Conf. Proc. 19C. 1995.

Slight co-current rotation was observed for the first time during the 2010 campaign on C-Mod

- Started observing little rotation during shots
 On certain shots
- even observed slight co-current rotation

LHCD induced rotation was only observed in USN plasmas and was proportional to $\rm I_{\rm P}$

- Towards the end of 2010, it was observed that current appeared to be influencing the amount of **co-current** rotation
- Co-current rotation was observed in Upper Single Null (USN) plasmas only
- A dedicated experiment was performed in early 2011 to test this connection in USN and LSN plasmas

Experimental Set-up

- Ip scan at fixed
 - •B_T=5.4 T
 - •n_e = 0.66E20 m-3
 - •n_{||}=1.6
 - •P_{LH} = 800 kW

_H(kW) 800 600 400 200 1×10²⁰ 9×10 8×10 $n_e(m^{-3})$ 7×10¹⁹ 6×10 5×10 4×1019 (MA) 0.8 0.6 0.4 0.2 0.0 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 t (s)

-Mod

- Deuterium main ion
- Rotation profiles measured by argon impurity spectroscopy (HiReX Sr)

A. Ince-Cushman et al. RSI 79, 10E302. 2008

Change in rotation depends strongly on Ip and magnetic configuration

LSN: rotation from LHCD appears to start near the core

C-Mod

USN: rotation from LHCD appears to be strongest near the core region as well

cator

;-Mod

LHCD Rotation Reversal occurs in a similar parameter space as the Intrinsic Rotation Reversal

- Rotation reversal involves an intrinsic momentum transport change
- Reversal effect appears in a similar regime as the LHCD reversal
- Perhaps LHCD is modifying the plasma transport directly

Some empirical observations exist as well

- Rotation direction seems to depend on plasma density
- Poloidal rotation change is not outside of the instrumental sensitivity (~1km/s)
- LHCD induced rotation was not observed in helium main ion plasmas

Several ideas have been proposed to explain LHCD rotation but they are still incipient

- This is unfortunately still not fully developed
- Proposed ideas
 - Direct momentum input from LH waves¹
 - Fast electron losses/fast electron pinch leading to an E_r
 - Changes in the plasma transport

¹J. P. Lee et al. APS Poster. 2010

Summary and future work

- Co- and counter-current LHCD driven rotation has been observed in Alcator C-Mod
- Direction depends strongly on plasma current
- Many ideas about what is causing this exist, but they are still incomplete
- In the future, we will test LHCD dependence on density and magnetic field

Open Questions and Requests for Collaboration

- Why are the LSN and USN plasma reversals different for a core oriented phenomenon?
- Is this one effect (e.g. transport) or multiple effects (e.g. wave momentum versus fast electron losses)?
- Can we come up with a testable theory for this effect?
- All collaborations are more than welcome: www.psfc.mit.edu/research/alcator/index.html

Thank you for your time

- The authors would like to thank A. White, S. Wolfe, M. Bitter, K. Hill, D. Pace, E. Marmar, and the Alcator C-Mod Team for their assistance with this work.
- •This work supported by Fusion Energy Sciences Program, administered by Oak Ridge Institute for Science and Education under a contract between the U.S. Department of Energy and the Oak Ridge Associated Universities and USDoE award DE-FC02-99ER54512

