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Motivation

* Toroidal rotation can enhance fusion performance through
improvements in stability and confinement

* In present devices, rotation is usually driven by external means
through nevutral beam input, as a by-product of heating

e In future burning plasmas including ITER, torque driven by beams
becomes comparatively smaller relative to moment of inertia
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Intrinsic Rotation Must Manifest Itself From Terms in

Toroidal Angular Momentum Balance Equation

Intrinsic velocit); profile (i<m/s)
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Intrinsic Torque Profile Can Be Measured With Beams

By Zeroing Out Rotation Profile

e With co-current NBI 1.0 —1200

torque, rotation is also
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Intrinsic Torque Profile in H-Mode Plasmas Always

Peaked at the Edge
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Edge Inirinsic Torque Is Well Correlated with

Pedestal Pressure Gradient

 Data obtained from power and
plasma current scans

L2 Edge Intrinsic Torque + +
* Qualitatively suggestive of F(Nm) [ + T 7
turbulence driven stress 0.8F H \\\\\\\\\\ ]
generating intrinsic rotation #
— Turbulent residual stress can be 04k e + ;
driven via ExB shear or other U } ]
orofile shear 3 ]
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* Shearin H-mode pedestal may -Edge pressure gradient (kPa/m)

provide mechanism to drive

intrinsic rotation in future devices
Solomon et al, PoP (2010)
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But... Probe Measurements Find Turbulent Stress Does

Not Match Intrinsic Torque

* Multi-tip reciprocating probe 1 o
[ntrinsic torque (meas)

measures all terms of fluid
stress tensor

— Mostly arises from Reynolds
stress contribution

Nm

e Discrepancy implies there
are additional torques at -2
edge contributing to intrinsic | |

drive 0.99 1
Y normalized

Muller et al, PRL 2011
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Additional Physics Is Required to Understand Edge

Intrinsic Torque from Wider Data Set

* Include QH-mode, hybrid
plasmas, different shapes

(USN, LSN, DN) and |
toroidal rotation levels : %&

* Relationship between edge
infrinsic torque and pressure
gradient becomes much less
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Intrinsic Drive Appears to Originate from Narrow

Region at the Edge

Edge rotation layer observed 60
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Intrinsic Drive Appears to Originate from Narrow

Region at the Edge

 Edge rotation layer observed 60

| | | | |
within 50 ms of L-H transition  Toroidal velocity (km/s)
— Af time when core roftation ¥
remains low 40+ vv¥y ¥ v v y Probe, A
': vy ¥ v W
3 vvvw i
e Core intrinsic rotation 20k WJ |
develops over time
0 CER K
* Therefore, edge layer may C Tt TT
contribute “seed” to core ' l l I |
intrinsic rotation 0 02 04 06 038 1

YV normalized

See Grierson, after lunch for details on
new main ion CER measurements
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Simple Model of Thermal lon Orbit Loss Qualitatively

Reproduces Edge Rotation Layer

Estimate velocity resulting from loss cone of counter-going thermal
ions whose orbits are lost to divertor

Thermal ion orbit loss may help explain missing torque
Toroidal Mach Number

1 | 1
Probe measurement

0.8 .

Orbit loss model_
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Torque from Orbit Loss Expected to Show

Dependence on Edge lon Temperature

* Measure of orbit loss torque made estimating rate at which
collisions drive empty loss cone toward Maxwellian

NoL € vmn<RV¢p:1>

e Separatrix velocity in turn dependent on
— Separatrix ion temperature T~
- location of the x-point relative fo the midplane separatrix R, /R,

 Empirically, add these quantities to regression analysis to
understand edge intrinsic torque data set
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Intrinsic Torque Persists Even in Plasmas With Finite

External Momentum Input

1.2
e Weak dependence of intrinsic =
torque on rotation Z 11
— Enhanced at rapid rotation by “é
approx 0.25 Nm per 100 km/s of 5
velocity at top of pedestal 2 10
k= -
L 0.9
e Intrinsic forque increases with By, =

— Partially due to changes in VP 4 08
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Consideration of Various Empirical Quantities Gives

Excellent Predictor of Edge Intrinsic Torque

Pedestal pressure gradient (VP )

Orbit loss physics (T;, R,) 1.5 s
* Finite rotation effects (V,) | |
€ : u
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) Measured T29% __(Nm)
» R2>0.9 (vs 0.34 for VP, only fit)

e Infrinsic torque predicted within ~0.2 Nm Solomon et al, NF (submitted
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Empirical Model of Intrinsic Torque Is Used to Model

Intrinsic Rotation Evolution Following L-H Transition

e Build model based on:
— Spatially and temporally constant y,
— Pinch velocity V., calculated in

TRANSP based on theoretical models 0.8 [——————— e
* Previously showing reasonable I Lol
agreement with experiment ER
— Boundary condition V, from Mach 7= -
probe measurement e o4l ]
. . . . 2} ’ V P)t‘d
— Intrinsic forque density profile 5 _/\
= | .
T]intrinsic(p’t) =0 forp <0.8 —g i V[;:OD ]
L =1 J
_c(t)(p—0.8) for0.8<p<0.96 = %z/ —
__ . probe 0.01 : : : e
=Mrs (P:1) forp>0.96 1600 1800 2000 2200
Time (ms)

with ¢ chosen so as to maftch model
for edge infrinsic torque
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Empirical Infrinsic Torque Profile Model Plus Simple

Transport Model Is Sufficient to Reproduce Rotation
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Conclusions

 Plasma edge capable of generating an intrinsic torque that is
robustly observed in all H-modes

e Contributions to edge intrinsic torque include
— Pedestal pressure gradient (residual stress)
— Separatrix temperature, X-point location (thermal ion orbit loss)
— Enhancement / positive feedback with velocity

 Empirically determined expression for edge intrinsic torque serves
as excellent predictor

e |ntrinsic rotation evolution after L-H transition consistent with
modeling based on calculated intrinsic torque

D=0 WM Solomon/TTF/Apr201 1 %P P P l
NATIONAL FUSION FACILITY

PRINCETON PLASMA
PHY5ICS LABORATORY

DDDDDDDD



