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Features of C-Mod ITBs

C-Mod plasmas provide unique platforms for
ITB study:

—  No particle or momentum input
—  Monotonic g profiles

—  Collisionally coupled ions and g

electrons with T; =T, °
Reduction in particle and thermal transport .

in the barrier region and core allows
the Ware pinch to dominate the
transport. This results in strongly
peaked pressure and density profiles.
lon thermal transport is reduced to
neoclassical levels
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Intrinsic toroidal rotation, slows, often reverses as ITB develops. Initially

co-going after the H-mode, the rotation at the plasma center
decreases throughout the ITB phase of the plasma. Rotation at the

half radius does not change significantly.




Toroidal rotation increases in the co-current direction after
the H-mode transition

On-axis ICRF heating: : : L
J The toroidal rotation profile is
Toroidal Velocity, A ®* strongly peaked on axis in H-
140 [~ ] mode.
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Toroidal rotation profiles are obtained from the Doppler shifted x-ray emission of

the argon impurity
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With off-axis ICRF heating, the central toroidal rotation
decreases, often reverses direction; an ITB usually develops
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Rotation increases in co-current direction
at the H-mode transition. AsITB

develops, core rotation decreases,
moves in counter current direction.

As density peaks, a well in the toroidal rotation

develops inside of the ITB foot region.
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The radial electric field profiles are different for on-axis,
off-axis ICRF heated discharges
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In the centrally ICRF heated discharge, E,

Is broad with peak of 55 kV/m at r/a=0.45
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Off axis ICRF heating leads
to an E, profile that is flat in
the core, then rises beyond
r/a=0.5. An ITB is observed

in the density and
temperature profiles in this
plasma

Toroidal rotation data are used in TRANSP calculation to determine the radial electric field;
Contributions from toroidal rotation, poloidal rotation, and pressure profile are shown.
Toroidal rotation is the largest contribution to the radial electric field.




EXB shearing rate is 2-3 times higher in ITB foot region in
plasmas where ITB develops

In the case of off-axis heated H-mode the shearing
rate is peaked to the outside, r/a>0.6.
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Centrally heated H-mode has

shearing rate peaked off-axis; The shearing rate is lower at

the magnitude is lower than ITB
case

r/a=0.6 if an ITB does not form
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ITG growth is comparable to EXB shearing rate in ITB foot region
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Linear GYRO calculation of the ITG growth rate echoes GS2 result

Maximum ITG growth rate at kyp=0.4, plotted with radius

peaks at 1.5 x 10° Rad/s outside ITB foot in the off-axis
heated plasma that developed an ITB

0.25
0 |
B 0.20f
on: I
I Maximum ITG
‘C—> 0.15 - growth rate is
\q; I higher in the core
® 0.10F for centrally heated
@ ICRF plasmas with
e : no ITB.
2 0.05
= - 7
(D 0_0%- ....... , | I | I | I i
4 0.5 0.6 0.7 0.8

radius (r/a)



Density Peaking

Using the toroidal magnetic field to scan the ICRF resonance
position to the half radius usually causes the central density to
peak and an ITB to develop
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1/18/11: Scanning the toroidal field from 3.9
T1to 5.5 T moves the 70 Mhz ICRF
resonance across the plasma. ITB density
peaking is seen at the extremes of the scan.
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The toroidal velocity profile changes as the magnetic field is
scanned: The ITB develops when there is a central well in the
velocity profile.
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Inside the half radius, toroidal velocity profiles were flat or
slightly peaked off access. No ITBs formed.
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Toroidal velocity shows weak or no central well when ICRF .
resonance is closer to axis, no ITB forms.




A deep well in the toroidal velocity appears as the ICRF
resonance reaches the half radius on the high field side (HFS)

of the plasma and an ITB forms
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The location of the peak in the velocity profile increases as the

ICRF resonance moves further off-axis

r/a of maximum velocity
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lon temperature profiles are flatter with the ICRF resonance
off-axis
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Data from 2 shots, 3 time
points each are shown. Solid
lines are from an ITB case,
dashed lines from a centrally
heated H-mode plasma.

Two profiles (left) are
normalized to the center
point to show the difference
In shape.



Flattening of the Ti profile and decreasing of R/L;, have been credited with
Increasing the stability of the plasma to ITG and decreasing turbulent diffusion

Calculation of Ti profile and R/Ly; using the heating
profile and neutron rate in TRANSP shows that the
profile flattens as the magnetic field is scanned to
move the rf resonance position off-axis

15

r/a

0)/ T. (r/la=.4)

(rla=

T,

lon temperature measurement from Doppler broadened 1
Argon emission verifies that the ion temperature profile
is flattened as the ICRF resonance is moved away from

the plasma center.
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Which is more important for ITB formation in Alcator C-Mod: R/L+; decreasing
after H-mode transition or EXB shearing rate increase in the ITB foot region?
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Conclusions and Future Work

» Measurements of spontaneous toroidal rotation on Alcator C-Mod are allowing examination of
the radial electric field and E X B shearing rate characteristics in C-Mod ITB plasmas.

“*The rotation profiles change between plasmas that have on-axis versus off-axis ICRF
heating.

A radial electric field well is calculated in the off-axis ICRF heated cases using toroidal
rotation data obtained from x-ray Doppler measurements and is significant in ITB plasmas

**The location of the peak in the rotation velocity appears to move with the ICRF resonance

» The self generated EXB shearing rate increases rapidly after the H-mode transition outside
r/a=.5 in off-axis ICRF heated discharges, before evidence of ITB density peaking appear.

“*EXB shearing rate is significantly higher (2 to 3 times) in the region outside r/a=0.5in ITB
plasmas than in non-ITB cases.

» The gyrokinetic calculation of the ITG growth rate shows that it is comparable to the
experimental EXB shearing rate near the ITB foot

» Detailed profile measurements of ion temperature and plasma rotation have been obtained
as a function of ICRF resonance position. Data are being studied and prepared for
gyrokinetic analysis (GS2 and GYRO, linear and nonlinear)
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