ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Collisional Electrostatic and Collisionless Electromagnetic Simulations with the Global Gyrokinetic δf Particle-in-Cell Čode ORB5

T. Vernay¹, A. Bottino², S. Brunner¹, L. Villard¹, B. F. McMillan¹, S. Jolliet³

¹Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, CH-1015 Lausanne, Switzerland ² Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, EURATOM Association, D-85748 Garching, Germany ³ Japan Atomic Energy Agency, Higashi-Ueno 6-9-3, Taitou, Tokyo, 110-0015, Japan

1. Introduction

- The global PIC gyrokinetic code ORB5 [1], based on δf -method, is upgraded with:
- Linearized intra- and inter-species Landau collision operators for ions and electrons [2]
- A novel background switching scheme in the frame of the δf PIC approach [2]
- A coarse graining procedure for avoiding the weight spreading [3]
- An electromagnetic solver [4]

Numerical results:

- Global neoclassical equilibria with self-consistent electric fields [2], [5] are obtained and used as starting point for carrying out simulations of electrostatic ITG microturbulence with collisional effects
- ► The crucial issue of numerical noise is addressed by showing that the coarse graining procedure makes it possible to run relevant collisional turbulent simulations

3. PIC δf Collisional Model

CRPP

The collisionless marker motion in phase space is given by Hahm's gyrokinetic equations [7]

► Local Maxwellian (LM):
$$f_{LM} = \frac{n_0(\Psi)}{(2\pi T_0(\Psi)/m)^{3/2}} \exp\left[-\frac{mv_{||}^2}{2T_0(\Psi)} - \frac{B\mu}{T_0(\Psi)}\right]$$
$$► Canonical Maxwellian (CM): f_{CM} = \frac{\mathcal{N}(\Psi_0)}{(2\pi \mathcal{T}(\Psi_0)/m)^{3/2}} \exp\left[-\frac{mv_{||}^2}{2\mathcal{T}(\Psi_0)} - \frac{B\mu}{\mathcal{T}(\Psi_0)}\right]$$

► Linearization of the e-e & i-i self-collision operators: $C[f, f] \approx C[\delta f_{LM}, f_{LM}] + C[f_{LM}, \delta f_{LM}]$ ► Lorentz operator (pitch-angle scattering) for e-i collisions: $C_{ei}[\delta f_{LM,e}] \approx \nu_{ei}(v) \hat{L}^2 \delta f_{LM,e}$ • Gyrokinetic Fokker-Planck equation, δf model:

$$D\delta f_{CM}$$
 , or f_{M} , Df_{CM} , Df_{CM} , Df_{CM} , Df_{M}

• Global collisionless electromagnetic simulations show the influence of β on heat transport

2. Two-Weight Scheme

- The gyro-averaged particle distribution function is split into a Maxwellian background f_0 and a perturbed part δf : $f = f_0 + \delta f$
- Marker distribution in gyrocenter phase space: $g(\dot{R}, v_{\parallel}, \mu, t)$
- ► In a collisional system, g is not constant along trajectories
- \implies two marker weights required [6]:

$$w_r(t) = \frac{\delta f}{g}\Big|_{\vec{R}_r(t), v_{\parallel,r}(t), \mu_r(t), t}$$
 $p_r(t) = \frac{f_0}{g}\Big|_{\vec{R}_r(t), v_{\parallel,r}(t), \mu_r(t)}$

$$\overline{Dt} + C[T_{LM}, \sigma T_{LM}] = -\overline{Dt} - C[\sigma T_{LM}, T_{LM}]$$

$$= -f_{CM} \left[\frac{d \ln \mathcal{N}}{d\Psi_0} + \frac{d \ln \mathcal{T}}{d\Psi_0} \left(\frac{v^2}{2v_{th}^2} - \frac{3}{2} \right) \right] \frac{d\Psi_0}{dt} + \frac{q f_{CM}}{\mathcal{T}(\Psi_0)} \langle \vec{E} \rangle \cdot \frac{d\vec{R}}{dt} - C[\delta f_{LM}, f_{LM}]$$

Advection operator along collisionless guiding center trajectories:

$$\frac{D}{Dt} := \frac{\partial}{\partial t} + \frac{\mathrm{d}\vec{R}}{\mathrm{d}t} \cdot \frac{\partial}{\partial \vec{R}} + \frac{\mathrm{d}v_{\parallel}}{\mathrm{d}t} \cdot \frac{\partial}{\partial v_{\parallel}} = \frac{\partial}{\partial t} + \left(\vec{v_{\parallel}} + \vec{v_{\nabla B}} + \vec{v_{C}} + \frac{\langle \vec{E} \rangle \times \vec{B}}{B^{2}}\right) \cdot \frac{\partial}{\partial \vec{R}} + \frac{\mathrm{d}v_{\parallel}}{\mathrm{d}t} \cdot \frac{\partial}{\partial v_{\parallel}}$$

- ► Time splitting scheme: collisionless dynamics ↔ collisional dynamics
- CM background for carrying out the collisionless dynamics: $f_0 = f_{CM}$
- LM background for carrying out the collisional dynamics: $f_0 = f_{LM}$

Transformation between both representations CM and LM relying on the conservation of the total distribution: $f = f_{LM} + \delta f_{LM} = f_{CM} + \delta f_{CM} \Longrightarrow p_{LM} + w_{LM} = p_{CM} + w_{CM}$

4. Electrostatic Collisional Simulations [8]

• Gradient-driven simulations, CYCLONE base case, adiabatic electrons. Two temperature gradients considered: $R_0/L_{T_0} = 6.9$. Total ion heat diffusivity in general increased by collisions • Temperature profiles with wide gradients are used ($\Delta_T \sim 0.6a$), except for figures showing the time traces of the shearing rate (bursts more visible in a more local configuration, $\Delta_T \sim 0.3a$)

5. RH test, effects of gradients

- Collisionless simulations: the residual value of the zonal flow is proportional to the initial amplitude of the perturbation
- Collisional simulations: the zonal flow converges towards the neoclassical equilibrium, regardless of the initial electric field amplitude

7. Electromagnetic Collisionless Simulations [9]

- CYCLONE base case, $\rho^* = 1/184$, $m_i/m_e = 1000$
- Left: Time evolution of the ion thermal diffusivity for an electromagnetic $\beta_e = 0.3\%$ simulation (red), and electrostatic simulation with kinetic trapped and adiabatic passing electrons (black, dashed) and with all electrons adiabatic (blue) Right: ion thermal diffusivity as a function of β_e , sources applied. The red point: different initial conditions (white noise). χ_i averaged over radius and time (moving average)

6. Suppressing the Neoclassical Electric Field

Simulations where the neoclassical drive dynamics $(\vec{v}_{\nabla B} + \vec{v}_c) \cdot \partial f_{LM} / \partial \vec{R}$ is removed are compared to turbulent simulations started from a neoclassical equilibrium. $R_0/L_{T_0} = 5.3$

Suppressing the neoclassical drive and the related shearing rate could increase the transport

8. Conclusions

value of toroidal mode number and show an identical power-law decay behavior for high n. The same result is present in gyrofluid simulations. At low n, gyrofluid spectrum values are significantly higher than the global gyrokinetic ones

▶ The code ORB5 has been proved to scale up to 32k cores on a BlueGene/P architecture for CYCLONE

 $ightarrow A_{\parallel}^2$ and ϕ^2 spectra reach a maximum for the same

Linear benchmarks have been performed with the **GYGLES** code

Non-negligible collisional effects on turbulence Kinetic electrons increase ITG heat diffusivity Future work: Collisional TEM simulations

References :

[1] S. Jolliet et al., Comput. Phys 177, 409 (2007) [2] T. Vernay et al., Phys. Plasmas 17, 122301 (2010) [3] Y. Chen and S. E. Parker, *Phys. Plasmas* 14, 082301 (2007) [4] A. Bottino et al., IEEE Trans. Plasma Science 38, 2129 (2010) [5] W. X. Wang et al., Phys. Rev. Lett. 87, 055002 (2001) [6] G. Hu, J. A. Krommes, *Phys. Plasmas* 1, 863 (1994) [7] T. S. Hahm, *Phys. Fluids* **31**, 2670 (1988) [8] Z. Lin et al., Phys. Rev. Lett. 83, 3648 (1999) [9] A. Bottino *et al.*, *IAEA FEC* (2010)

Transport Taskforce Workshop 2011, San Diego