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1. Introduction

The global PIC gyrokinetic code ORB5 [1], based on δf -method, is upgraded with:

I Linearized intra- and inter-species Landau collision operators for ions and electrons [2]
I A novel background switching scheme in the frame of the δf PIC approach [2]
I A coarse graining procedure for avoiding the weight spreading [3]
I An electromagnetic solver [4]

Numerical results:

I Global neoclassical equilibria with self-consistent electric fields [2], [5] are obtained and
used as starting point for carrying out simulations of electrostatic ITG microturbulence with
collisional effects

I The crucial issue of numerical noise is addressed by showing that the coarse graining
procedure makes it possible to run relevant collisional turbulent simulations

I Global collisionless electromagnetic simulations show the influence of β on heat transport

2. Two-Weight Scheme

I The gyro-averaged particle distribution function is split into a Maxwellian background f0
and a perturbed part δf : f = f0 + δf

I Marker distribution in gyrocenter phase space: g(~R, v‖, µ, t)

I In a collisional system, g is not constant along trajectories

=⇒ two marker weights required [6]:

wr (t) =
δf
g

∣∣∣∣~Rr (t),v‖,r (t),µr (t),t
pr (t) =

f0
g

∣∣∣∣~Rr (t),v‖,r (t),µr (t),t

3. PIC δf Collisional Model

I The collisionless marker motion in phase space is given by Hahm’s gyrokinetic equations [7]

I Local Maxwellian (LM): fLM =
n0(Ψ)

(2πT0(Ψ)/m)3/2 exp

[
−

mv2
||

2T0(Ψ)
− Bµ

T0(Ψ)

]

I Canonical Maxwellian (CM): fCM =
N (Ψ0)

(2πT (Ψ0)/m)3/2 exp

[
−

mv2
||

2T (Ψ0)
− Bµ
T (Ψ0)

]
I Linearization of the e-e & i-i self-collision operators: C[f , f ] ≈ C[δfLM , fLM ] + C[fLM , δfLM ]

I Lorentz operator (pitch-angle scattering) for e-i collisions: Cei [δfLM,e] ≈ νei(v)L̂2δfLM,e

I Gyrokinetic Fokker-Planck equation, δf model:

DδfCM
Dt

+ C[fLM , δfLM ] = −DfCM
Dt

− C[δfLM , fLM ]

= −fCM

[
d lnN
dΨ0

+
d ln T
dΨ0

(
v2

2v2
th
− 3

2

)]
dΨ0
dt

+
q fCM
T (Ψ0)

〈~E〉 · d
~R

dt
− C[δfLM , fLM ]

I Advection operator along collisionless guiding center trajectories:

D
Dt

:=
∂

∂t
+

d~R
dt
· ∂
∂~R

+
dv‖
dt
· ∂
∂v‖

=
∂

∂t
+

(
~v‖ + ~v∇B + ~vc +

〈~E〉 × ~B
B2

)
· ∂
∂~R

+
dv‖
dt
· ∂
∂v‖

I Time splitting scheme: collisionless dynamics↔ collisional dynamics

I CM background for carrying out the collisionless dynamics: f0 = fCM

I LM background for carrying out the collisional dynamics: f0 = fLM

I Transformation between both representations CM and LM relying on the conservation of the total distribution:
f = fLM + δfLM = fCM + δfCM =⇒ pLM + wLM = pCM + wCM

4. Electrostatic Collisional Simulations [8]

I Gradient-driven simulations, CYCLONE base case, adiabatic electrons. Two temperature gradients considered: R0/LT0
= 5.3 and R0/LT0

= 6.9. Total ion heat diffusivity in general increased by collisions
I Temperature profiles with wide gradients are used (∆T ∼ 0.6a), except for figures showing the time traces of the shearing rate (bursts more visible in a more local configuration, ∆T ∼ 0.3a)
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5. RH test, effects of gradients

I Collisionless simulations: the residual value of the zonal flow is proportional to the initial amplitude of the
perturbation

I Collisional simulations: the zonal flow converges towards the neoclassical equilibrium, regardless of the
initial electric field amplitude
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6. Suppressing the Neoclassical Electric Field

I Simulations where the neoclassical drive dynamics (~v∇B + ~vc) · ∂fLM/∂~R is removed are compared to
turbulent simulations started from a neoclassical equilibrium. R0/LT0 = 5.3
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I Suppressing the neoclassical drive and the related shearing rate could increase the transport

7. Electromagnetic Collisionless Simulations [9]

I CYCLONE base case, ρ∗ = 1/184, mi/me = 1000
I Left: Time evolution of the ion thermal diffusivity for an electromagnetic βe = 0.3% simulation (red), and electrostatic

simulation with kinetic trapped and adiabatic passing electrons (black, dashed) and with all electrons adiabatic (blue)
I Right: ion thermal diffusivity as a function of βe, sources applied. The red point: different initial conditions (white noise).
χi averaged over radius and time (moving average)
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I A2
‖ and φ2 spectra reach a maximum for the same

value of toroidal mode number and show an identical
power-law decay behavior for high n. The same result
is present in gyrofluid simulations. At low n, gyrofluid
spectrum values are significantly higher than the global
gyrokinetic ones

I The code ORB5 has been proved to scale up to 32k
cores on a BlueGene/P architecture for CYCLONE

I Linear benchmarks have been performed with the
GYGLES code

8. Conclusions

I Non-negligible collisional effects on turbulence
I Kinetic electrons increase ITG heat diffusivity
I Future work: Collisional TEM simulations
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