

Impurity Transport Measurements with the New Multi-Energy Soft-X-ray Diagnostic on NSTX D. Clayton, K. Tritz, D. Stutman, D. Kumar, and M. Finkenthal (JHU) **B. LeBlanc** (*PPPL*)

(no filter)
0.3 µm Ti
5 µm Be
15 µm Be
50 um Be

Gains	Bandwidth
25 kΩ	300 kHz
100 kΩ	120 kHz
500 kΩ	50 kHz
1 MΩ	35 kHz
2 MΩ	26 kHz
5 MΩ	16 kHz
10 MΩ	11 kHz
20 MΩ	6 kHz

The Time Evolution of Emission from an Impurity Perturbation is Needed to Distinguish the Effects of Diffusion from Convection

Initial ME-SXR measurements of neon injection are consistent with the expectation of low diffusion in the plasma edge with the application of lithium to the walls

Measurements of multiple impurities will be performed this year with the full diagnostic

- Transport of multiple impurities will be measured as part of the FY2012 OFES 3 Facility Joint Research Milestone investigating multichannel transport
- Transport of multiple impurities will be measured with the application of 3-D fields, as part of a larger NSTX experiment to study the effects of RMP coils on multichannel transport
- The full ME-SXR diagnostic will be in use, and STRAHL will be used to fit the best-fit diffusion and convection radial profiles to the x-ray measurements
- ADAS will be used to calculate emission from higher-Z impurites

• STRAHL was used to generate simulated data for the profiles shown on the left (solid lines) • STRAHL was then run with small variations in D and v (dashed lines) in the edge, the

- At each time point, v can only be found as a function of an unknown D • This function of D changes in time throughout an impurity density perturbation, thus allowing D and v to be found separately, assuming they are constant on the timescale of
- After the ~ 30 ms perturbation, x-ray emission begins to reach a steady state

Chi square of fits to simulated data for an array of *D* and *v* values at four points in time

A cut along the dashed line from the plots above, showing how chi square varies as a function of D (constant v)

Radial profiles of 5 µm Be emission from simulation (points) with $D = 0.8 \text{ m}^2/\text{s}$ and a fit (line) with $D = 1.0 \text{ m}^2/\text{s}$

Neon emission is slow to penetrate the core, as expected in the low diffusion case (compare to model in previous section). Precise fits of *D* and *v* were not possible because of uncertainty in the neon source term (bolometric data unavailable from 2010).

