The Multi-Energy Soft-X-Ray Array is a novel compact diagnostic that provides $F_{\alpha, \beta}$ and impurity profile information with high spatial resolution (<1 cm) and fast time response (>10 kHz).

Impurity Transport Measurements with the New Multi-Energy Soft-X-Ray Diagnostic on NSTX

D. Clayton, K. Tritz, D. Stutman, D. Kumar, and M. Finkenthal (JHU)

B. LeBlanc (PPPL)

Impurity Transport Modeling with STRAHL is Used to Determine the Diffusive and Convective Transport Coefficients from X-Ray Emission

SRAHL (R. Dux) is a novel impurity particle transport code.

- **STRahl** solves a radial transport equation for each charge state of an impurity, with the following features:
 - Radial convection is modeled with simple, constant coefficients.
 - Diffusion coefficients are modeled as polynomials of tangency radius.
 - All impurities are considered to be in equilibrium.
 - Neoclassical transport is included.
 - The full ME-SXR diagnostic will be in use, and STRAHL will be used to determine the diffusive and convective transport coefficients from X-ray emissions.

The Time Evolution of Emission from an Impurity Perturbation is Needed to Distinguish the Effects of Diffusion from Convection

- **STRahl** uses a time-dependent radial transport equation for each charge state.
- **Initial ME-SXR measurements of neon emission are consistent with the expectation of low diffusion in the plasma edge with the application of lithium to the wall.**
- **The novel capabilities of the ME-SXR system allow an examination of the various mechanisms behind the different ELM phenomena in NSTX.**

100% Be without Emission Controls

- **Neutral source is from user-defined gas puff at the plasma boundary**
- **Solves a radial transport equation for each charge state of an impurity, with the following features:**
 - Radial convection is modeled with simple, constant coefficients.
 - Diffusion coefficients are modeled as polynomials of tangency radius.
 - All impurities are considered to be in equilibrium.
 - Neoclassical transport is included.
 - The full ME-SXR diagnostic will be in use, and STRAHL will be used to determine the diffusive and convective transport coefficients from X-ray emissions.

The Time Evolution of Emission from an Impurity Perturbation is Needed to Distinguish the Effects of Diffusion from Convection

- **STRahl** uses a time-dependent radial transport equation for each charge state.
- **Initial ME-SXR measurements of neon emission are consistent with the expectation of low diffusion in the plasma edge with the application of lithium to the wall.**
- **The novel capabilities of the ME-SXR system allow an examination of the various mechanisms behind the different ELM phenomena in NSTX.**

Measurements of Multiple Impurities will be performed this year with the full diagnostic

- **Diffusion affects the rate at which the impurity density equilibrates.**
- **Convexion affects the spatial, and thus charge state, distribution of impurities.**
- **The bolometer array is needed to determine the neon source term in the plasma edge.**

Initial ME-SXR measurements of neon emission are consistent with the expectation of low diffusion in the plasma edge with the application of lithium to the wall.

- **Diffusion affects the rate at which the impurity density equilibrates.**
- **Convexion affects the spatial, and thus charge state, distribution of impurities.**
- **The bolometer array is needed to determine the neon source term in the plasma edge.**

The novel capabilities of the ME-SXR system allow an examination of the various mechanisms behind the different ELM phenomena in NSTX.

- **STRahl** uses a time-dependent radial transport equation for each charge state.
- **Initial ME-SXR measurements of neon emission are consistent with the expectation of low diffusion in the plasma edge with the application of lithium to the wall.**
- **The novel capabilities of the ME-SXR system allow an examination of the various mechanisms behind the different ELM phenomena in NSTX.**