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Introduction

• Core confinement in tokamaks is sensitive to edge profile gradients.
• The edge profiles are set by turbulence, so it is important to understand the 

mechanisms of turbulence saturation and how these influence the edge 
gradients.

• For typical edge profiles, there is no scale separation between background 
and turbulence,                   .

• Edge turbulence studies require a “global” code (with edge and SOL 
profiles free to evolve), not a “local” or flux-tube code. Here, we use the 
2D SOLT (SOL turbulence) code.

• We are studying the roles of
– pressure profile modification
– Reynolds stress and sheared flows
– radial variation in geometry and physics (open and closed field 

lines, drift wave, curvature driven and sheath regions)

1~Lk n
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Outline

• Quasi-linear calculations for Kelvin-Helmholtz 
(KH) and interchange modes

• Overview of SOLT turbulence simulations
• Comparison of quasi-linear theory with simulations
• Conclusions
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Quasi-linear model

• Interchange and Kelvin-Helmholtz (KH) stability is given by 

• BCs:   0 as x  
• Inputs:  ky and profiles n0(x) and vy(x)  scalelengths Ln and Lv

• Compute the Reynolds’ stress (RS)-generated dvy(x)/dt. 
 the sign of dvy(x)/dt depends on kyLn and Lv/Ln. 

• Let Ln = 1 so that length scales are normalized to Ln. 
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Constant velocity shear  (Lv >> Ln)

Constant vy shear  no KH mode. 
RS tries to increase the vy gradient 
at the mode center  ZF instability

Shear stabilizes the interchange mode and is most effective at high ky.

kyLn = 0.6
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Note dependence of growth rate on kyLn:
(a)  small kyLn    0 for all instability drives 

(flows are not important)
(b)  intermediate kyLn  flows are destabilizing (KH mode)
(c)  large kyLn  flows stabilize interchange mode

Localized vy shear  (Lv ~ Ln)

The amp = 0.5 case is largely 
interchange driven. 
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Effect of the RS depends on kyLn

kyLn >> 1  RS tries to increase 
the gradient in vy at the mode 
center, enhancing the flow that 
was present.

kyLn  1  The RS opposes the 
existing flow.
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Quasi-linear picture

From these and other cases, varying the shapes of the profiles and the 
scale lengths, we obtain the following picture of how curvature-driven 
interchange modes interact with sheared flows:

• Pure KH modes act to reduce the vy shear driving them (at least locally, 
although this may increase the shear elsewhere).  

• Shear in vy stabilizes the interchange mode and is most effective on the 
high ky modes.

• The Reynolds Stress (RS) from pure interchange modes acts to 
enhance the imposed flows if the flows are large-scale with respect to 
the mode’s radial variation, while the RS opposes the seed flows if 
those flows are small scale.
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Quasi-linear picture - 2

• An important implication of this work is that long wavelength modes (with 
respect to the pressure gradient) cannot be stabilized by self-generated 
sheared flows; instead, they must be stabilized by pressure profile 
modification (wave-breaking, plateau formation). This agrees with the 
SOLT simulations described subsequently.

• Finally note that these results suggest that the inverse cascade in ky may 
be responsible for this behavior:
– Large ky, associated with small-scale radial mode structure, 

feeds the (larger-scale) flow. 
– Small ky, associated with large-scale radial mode structure, saps

the (smaller-scale) flow.

• This picture is in qualitative agreement with SOLT simulations of turbulence 
saturation as a function of  radial gradients
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Quasi-linear picture - 3

For comparison with the SOLT turbulence simulations, summarize the 
results of the quasi-linear calculations for curvature-driven interchange 
modes in the following table:

RS+RSky Lp  1
RS+RS+ky Lp >> 1

Lv >> LpLv  Lp

where RS+ (RS)  the Reynolds Stress (RS) acts to increase
(decrease) the flow shear at the mode center.

RS+  is the usual ZF instability found in flux-tube (local) simulations.
RS requires a global turbulence code (e.g. SOLT).
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SOLT turbulence studies

input 
profiles:

source region, 
DW physics sheath region

curvature-driven 
turbulence

We have done a study of the saturation of the turbulence 
as a function of the instability drive 0  dP/dx  (P = n T)
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Large gradient case
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Small gradient case

run33
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Regime diagram for SOLT study

Saturation mechanisms

1  flow + profile mod

2  profile mod only

3  flow only (frozen profiles)

Plot of particle flux  vs interchange growth rate 0 (see p. 11 )

blue curve  stabilizing effect of sheared flow decreases rapidly as grad-P 
increases and ky Lp decreases (agrees with the quasi-linear model)
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Conclusions: emerging picture

• Here we have studied curvature-driven interchange turbulence in the edge 
plasma, saturated by a combination of
– sheared poloidal flows
– radial profile flattening

• The dominant saturation mechanism depends on the radial gradients.
• The experimental geometry (changing topology of magnetic field lines) sets 

the natural radial scale Lx of the edge turbulence.
• The radial mode structure of the turbulence, and profiles, determine the ky

spectrum, and kyLx determines the evolution of the sheared flows.
• The relative ordering of ky, Lp, and Lv (pressure and sheared velocity scale 

lengths) influences the sign of the Reynolds Stress (RS) and whether it 
causes the sheared flows to grow (RS+) or damp (RS-)
– this may be related to the inverse cascade
– see pp. 8 – 10 for details
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• The RS regime influences the saturation mechanism for the interchange 
turbulence
– RS+   shear flow stabilization   
– RS-  profile flattening

• When the mode significantly overlaps with the DW region inside the edge 
or the sheath-connected region in the far SOL, additional physics enters:

– DW      directionality, poloidal flows
– sheath   sink for particles, heat and momentum;

Bohm sheath-potential-driven flows

• Preliminary comparisons with SOLT turbulence simulations are 
encouraging but more work is needed to obtain optimal simulations for this 
comparison.

Conclusions (cont.)


