Edge transport and turbulence reduction, and formation of ultra-wide pedestals with lithium coated PFCs in NSTX

J.M. Canik and R. Maingi

R.E. Bell, A. Diallo, W.A. Guttenfelder, B.P. LeBlanc, M. Podesta, Y. Ren (PPPL), S. Kubota (UCLA), T.H Osborne (GA), V.A. Soukhanovskii (LLNL)

and the NSTX Research Team

US TTF Meeting
San Diego, CA
April 6-9, 2011
Outline

• Introduction: ELM elimination and pedestal profile changes with lithium coatings

• SOLPS is used for interpretive modeling of the edge plasma

• Lithium coatings lead to widening of edge transport barrier
 – Two regions: stiff T_e near separatrix, reduced transport at top of pedestal
 – Measurements show reduced fluctuations with lithium

• Discussion of candidate edge transport mechanisms
Type I ELMs eliminated, energy confinement improved with lithium wall coatings

- Without Li, With Li
- ELM-free, reduced divertor recycling
- Lower NBI to avoid β limit
- Similar stored energy
- H-factor 40%↑

H. Kugel, PoP 2008
R. Kaita, IAEA 2008
M. Bell, PPCF 2009
T_e, T_i increased and edge n_e decreased with lithium coatings

No lithium

With lithium

separatrix
Peak pressure gradient moves inwards, p' and j reduced outside $\psi_N \sim 0.95$

Pre-Li

- Stable
- Kink/Peeling Unstable
- 0.1
- 0.05

Post-Li

- Kink/Peeling Unstable
- 0.1
- 0.05

R Maingi, PRL 2009
Pre- and post-lithium discharges are modeled using SOLPS

- SOLPS (B2-EIRENE: 2D fluid plasma + MC neutrals) used to model NSTX experimental data
 - Neutrals contributions
 - Recycling changes due to lithium
 - f/Canik APS10 invited (PoP 11)

Parameters adjusted to fit data

<table>
<thead>
<tr>
<th>Parameters used to constrain code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial transport coefficients D_\perp, χ_e, χ_i</td>
</tr>
<tr>
<td>Divertor recycling coefficient</td>
</tr>
<tr>
<td>Separatrix position/ T_e^{sep}</td>
</tr>
</tbody>
</table>

J. Canik, PoP 2011 submitted
Procedure for fitting midplane n_e, T_e, T_i profiles

- Start with initial guess for D_\perp, χ_e, χ_i
- Run simulation for $\sim 10\%$ of confinement time
- Take radial fluxes along 1-D slice at midplane from code
 - $\Gamma_{\text{SOLPS}}, q_{e\text{ SOLPS}}, q_{i\text{ SOLPS}}$
- Update transport coefficients using SOLPS fluxes and experimental profiles
 - E.g., $D^{\text{new}} = -\Gamma_{\text{SOLPS}}/\text{grad}(n_e^{\text{EXP}})$
 - Here we use fits to profiles used in stability calculations (Maingi PRL ’09)
- Repeat until $n_e/T_e/T_i^{\text{SOLPS}} \sim n_e/T_e/T_i^{\text{EXP}}$

J. Canik, PoP 2011 submitted
Peak D_α brightness is matched to experiment to constrain PFC recycling coefficient: lithium reduces R from ~ 0.98 to ~ 0.9

- For each discharge modeled, PFC recycling coefficient R is scanned
 - Fits to midplane data are redone at each R to maintain match to experiment
- D_α emissivity from code is integrated along lines of sight of camera, compared to measured values
 - Best fit indicates reduction of recycling from $R \sim 0.98$ to $R \sim 0.9$ when lithium coatings are applied
Midplane and divertor profiles from modeling compare well to experiment for the pre-lithium case

- $P=3.7$ MW
- $R=0.98$

- Good match to midplane profiles

- Carbon included: sputtering from PFCs, inward convection to match measured n_C^{6+}

- Heat flux and D_α, radial decay sharper than experiment
Combining reduced recycling and transport changes gives match to measurements with lithium

- P=1.9 MW
- R=0.90

- Transport coefficients adjusted to recover fit to upstream data

- Good match to both peak and profile for heat flux and D_α (except PFR)

*Uncertainty exists in IR measurements, due to emissivity change with lithium films
Transport barrier widens with lithium coatings, broadening pedestal

- Pre-lithium case shows typical H-mode structure
 - Barrier region in D, χ_e just inside separatrix
- Pedestal is much wider with lithium
 - D_\perp, χ_e similar outside of $\psi_N \approx 0.95$
 - Low D_\perp, χ_e persist to inner boundary of simulation ($\psi_N \approx 0.8$)
- Changes to profiles with lithium are due to reduced fluxes combined with wide transport barrier
Particle and heat sources are reduced with lithium

- Pre-lithium case shows typical H-mode structure
 - Barrier region in D, \(\chi_e \) just inside separatrix
- Pedestal is much wider with lithium
 - \(D_\perp, \chi_e \) similar outside of \(\psi_N \sim 0.95 \)
 - Low \(D_\perp, \chi_e \) persist to inner boundary of simulation (\(\psi_N \sim 0.8 \))
- Changes to profiles with lithium are due to reduced fluxes combined with wide transport barrier
Transport barrier widens with lithium coatings, broadening pedestal

- Two regions considered
 - Top of pedestal
 - Large transport reduction
 - Bottom of pedestal
 - Transport similar with lithium
Outer region: T_e gradient nearly constant outside of $\Psi_N \sim 0.95$

• Key to ELM suppression: reduction of current for $\Psi_N > .95$
 – Density is reduced with lithium, but T_e unchanged
 – Pressure gradient is reduced \rightarrow less bootstrap current

• Edge $\nabla T_e \sim$ constant, critical gradient?
 – Intermediate stages shown have less lithium, same P_{NBI} as pre-lithium case

![Graph showing T_e vs Ψ_N](image)

![Graph showing χ_e vs Ψ_N](image)
Inner region: as lithium coatings thicken, density barrier widens, pedestal-top χ_e reduced

- Several shots analyzed with increasing lithium thickness
- ELMy to reduced frequency to ELM-free

- Barrier in particle transport widens with lithium thickness
- χ_e inside $\Psi_N \sim 0.95$ gradually reduced
Edge reflectometry near pedestal top shows reduced density fluctuations with lithium

- Reduced transport in inner region -> higher pedestal top pressure
- Reflectometer shows reduced fluctuation level
 - Pre-lithium: strong amplitude and phase fluctuation
 - Post-lithium: little amplitude fluctuation
 - 3D simulations using Kirchoff integral indicate turbulence level reduced from ~10% to ~1% with lithium
High-k scattering diagnostic shows little change in fluctuation amplitude at $k\rho_s > 10$

- Pre-to-post lithium transition repeated, similar profile changes observed
- Fluctuations similar for $k\rho_s > 10$, some reduction at lower k for the with-lithium case
With power reduced so T_e profile matches pre-lithium case, fluctuation amplitudes show broad reduction

- Power reduced to 2 MW
- T_e profile similar to pre-lithium
- Fluctuation amplitude reduced across measured $k_\perp \rho_s$
BES also shows reduced turbulence levels in post-lithium discharges

Courtesy D.R. Smith, UW
ETG is unstable in steep gradient edge

- Investigating ETG stability with GYRO [1]
 - $\chi_e \sim 2-5 \left(\rho_e^2 v_{te}/L_{Te} \right)$, within range of nonlinear expectations
 - Electrons satisfy gyrokinetic ordering $\rho_e/L_{Te} < 1/400$

- ETG unstable in steep gradient region ($\psi_N > 0.92$)
 - Threshold likely set by density gradient
 - $\eta_{e,\text{crit}} \sim 1-1.25$ calculated in AUG edge [2], compared to core criteria $\eta_{e,\text{crit}} \sim 0.8$ [3]

- ETG stable at top of pedestal ($\psi_N = 0.88$)
 - Smaller density gradient, threshold likely sensitive to $Z_{\text{eff}} T_e/T_i$ and s/q

- Calculating thresholds and transport are work-in-progress

Measured pedestal modifications are consistent with paleoclassical transport

- Pedestal structure model based partly on paleoclassical transport proposed
 - J.D. Callen, UW-CPTC 10-9
 - Depends on resistivity profile -> Z_{eff} changes important

- Model recovers χ_e magnitude, shape, rise near separatrix, as well as modest increase with lithium outside $\psi_N \sim 0.95$

- Density profile shape changes with lithium also captured by model
Edge transport is reduced, transport barrier widened with lithium coatings

- Measured pedestal profile changes with lithium are reproduced in 2-D edge modeling

- Matching midplane profiles requires change to transport coefficients in addition to recycling
 - Transport barrier widens with lithium, giving wider pedestal
 - T_e gradient relatively unchanged outside $\psi_N \sim 0.95$

- Fluctuation measurements show reduced edge turbulence in inner pedestal region

- Future research will focus on possible transport mechanisms
 - ETG and paleoclassical possible mechanisms for edge transport
Carbon is the dominant impurity species with lithium coatings

- Measured lithium concentration is much less than carbon
 - Carbon concentration ~100 times higher
 - Carbon increases when lithium coatings are applied
 - Neoclassical effect: higher Z accumulates, low Z screened out

- Increase in n_C due to lack of ELMs
 - Can be mitigated by triggering ELMs

R. Bell
M. Bell, PPCF 51 (2009) 124054