Probing the linear structure of toroidal drift modes.

D.Dickinson1,2, C.M.Roach2, and H.R.Wilson1

1York Plasma Institute, Dept of Physics, University of York, Heslington, York, YO105DD, UK
2Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX143DB, UK

High resolution computational studies of the nature of high toroidal mode number, n, 2D linear toroidal drift modes are compared with predictions from a local ballooning theory. The focus is on the ion temperature gradient (ITG) eigenmode problem for modes with finite n, in a simple tokamak geometry with arbitrary profiles. The infinite n 1D local ballooning problem is also solved to derive the local complex mode frequency, $\Omega_0(x, k)$ for any complex value of the ballooning angle k at the radial position x.

For isolated modes, occurring at turning points in Ω_0, there is good agreement between the 2D results and the 1D ballooning prediction, with the mode localised on the outboard midplane (i.e. $\theta = 0$, where the local growth rate is largest). General modes, occurring away from turning points, however, are found to peak about $\theta = \pi/2$ and therefore have reduced growth rate. There is good agreement between the growth rate from the 2D code and the 1D ballooning result with $k = \pi/2$. The relative phases of the Fourier modes that couple to produce the 2D ballooning mode demonstrate a narrow spread of k about $\pi/2$ as expected from analytic ballooning theory [1].

![Figure 1: Contours in the poloidal plane of electrostatic potential for an isolated mode and a general mode](image)

A linear flow profile has been introduced into the 2D problem through a radially dependent Doppler shift to the mode frequency. The growth rates of isolated modes are reduced relative to the cases without flow. This is consistent with the analytic result [2], that one should take the average of the 1D result, Ω_0, over one period of k. However the poloidal extent of the mode structure need not be close to 2π. General modes are found to only be weakly affected by linear flow shear; k remains centred on $\pi/2$ and the growth rate of the mode does not change although the radial and poloidal extent varies.

A key conclusion is that the proper choice of k is crucial in the use of local ballooning theory (or, equivalently, flux tube approaches) to study linear eigenmode stability. The importance for non-linear investigations remains an area of further work.

References

This work was funded partly by the RCUK Energy Programme under grant EP/1501045 and the European Communities under the contract of Association between EURATOM and CCFE.