Program for Finding the Upper Bound on Unstable Alfvén Mode Induced Fusion Alpha Transport Losses*

R.E. Waltz and E.M. Bass

General Atomics, PO Box 85608, San Diego, California 92186-5608, USA

Previous GYRO simulations have shown that reactor-scale fusion alpha transport from thermal plasma instabilities like ITG/TEM is likely to be insignificant [1]. Recent simulations of fixed gradient alpha transport induced by alpha driven local (very low- $k_{\theta}\rho_s$ but high-*n* for low- ρ_*) Alfvénic TAE/EPM turbulence embedded in very strong (moderate- $k_{\mu}\rho_s$) ITG/TEM turbulence showed nonlinearly saturated states can exist at energetic particle (EP) pressures up to perhaps twice the TAE/EPM stability threshold with quasi-linear (and likely intermittent) relaxation of the driving EP pressure gradient appearing at stronger EP drive [2]. However, even the pre-relaxation level of EP transport is not significantly higher than the ITG/TEM induced level below the local linear TAE/EPM threshold EP pressure gradient $-dP_{\alpha}^{loc-lin}/dr$. Since the global linear stability threshold will always exceed that for the local, $-dP_{\alpha}^{loc-lin}(r)/dr$ should provide an upper bound on unstable Alfvén mode induced fusion alpha transport losses: Given the MHD equilibrium and thermal plasma profiles, it is straightforward to calculate the local fusion energy deposition rate $Q_{alpha}(r)$ [MeV/sec/m³], the classical slowing-down fusion alpha density profile $n_{\alpha}^{class}(r)$, and the effective alpha temperature profile $T_{\alpha}^{class}(r)$ (which has a very weak gradient). Since $-T_{\alpha}^{class}dn_{\alpha}^{class}(r)/dr$ will be less than $-dP_{\alpha}^{loc-lin}(r)/dr \sim -T_{\alpha}^{class} dn_{\alpha}^{loc-lin}/dr$ beyond some outer radius, $n_{\alpha}(r) = n_{\alpha}^{class}(r)$ for $r > r_b$. Integrating $-dn_{\alpha}(r)/dr = [-dn_{\alpha}^{class}(r)/dr, -dn_{\alpha}^{loc-lin}(r)/dr]_{min}$ inward from $r = r_b$, the maximum $n_\alpha(r)$ will be less than $n_\alpha^{class}(r)$ for $r < r_b$. Since the effective alpha temperature should not deviate from $T_{\alpha}^{class}(r)$, the minimum fusion energy deposition rate to the thermal plasma is $[n_{\alpha}(r)/n_{\alpha}^{class}(r)]Q_{alpha}(r)$ from which an upper bound on alpha transport losses can be inferred. Physically accurate gyrokinetic $-dP_{\alpha}^{loc-lin}(r)/dr$ profiles from TGLF projected ITER plasma profiles are easily obtained [3].

- [1] C. Estrada-Mila, J. Candy, and R.E. Waltz, "Turbulent transport of alpha particles and helium ash in reactor plasmas," Phys. Plasmas **13**, 112303 (2006).
- [2] E. M. Bass and R.E. Waltz, "Gyrokinetic simulations of mesoscale energetic particle-driven Alfvénic turbulent transport embedded in microturbulence," Phys. Plasmas **17**, 112319 (2010).
- [3] J.E. Kinsey, G.M, Staebler, J. Candy, R.E. Waltz, and R.V. Budny, "ITER predictions using the GYRO verified and experimentally verified TGLF transport model," submitted to Nucl. Fusion 2010.

*Work supported by the US Department of Energy under DE-FG02-09ER54309 and by US DOE-SciDAC Gyrokinetic Simulation Energetic Particle (GSEP) project under DE-FC02-08ER54963.